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Abstract

Transactional Memory (TM) promises to provide a scalable mechanism for synchronization

in concurrent programs, and to offer ease-of-use benefits to programmers. Since multi-

processor architectures have dominated CPU design, exploiting parallelism in programs

is essential to achieve better performance and get further speedup as hardware upgrades

increase the number of cores, instead of CPU frequency. However, lock-based synchroniza-

tion is tricky to use, especially when applications have irregular or hard-to-predict memory

access patterns. TM is considered as an alternative synchronization method to locks.

Emerging Non-Volatile Memory (NVM) or Persistent Memory (PM) technologies fun-

damentally reshape the memory and storage hierarchies by providing a single memory that

is dense, byte-addressable, fast, and able to retain its contents without consuming energy.

However, the CPU cache and registers are expected to remain volatile. Programming di-

rectly with PM is difficult and error-prone due to the additional instrumentation required

for failure atomicity. The overlap between TM and PM instrumentation is substantial,

making TM an appealing programming model for PM.

Evolving computer architecture brings various challenges to programmers. Transac-

tional memory seems to be a silver bullet to solve them all. It is surprising that there

have been few examples of TM being used in “real” software, especially considering that

hardware TM is beginning to see widespread availability.

In this dissertation, we conduct comprehensive experiments to identify technical chal-

lenges that prevent programmers from using TM. We demonstrate that the existing TM

platform and common parallel programming models are not compatible in several scenarios,

such as optimistic concurrency control with fast and immediate memory reclamation, com-

1
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plex synchronization patterns, irrevocable or long-running operations, and data persistence.

These features are requirements of real-world applications. We explain how to tailor TM in

a practical and efficient way to support these features. Our target is to increase our funda-

mental understanding of how the concurrent threads of real-world programs interact, and

to extend transactional programming models and systems, so that they are able to support

these requirements efficiently and without significantly increasing programmer effort.

2
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Chapter 1

Introduction

From small digital devices such as smartphones, tablets, and smartwatches, to personal

computers and large servers, multiprocessors are replacing single processor systems in all

areas of computing. The trend for multi-core processors is not surprising because manufac-

turers have realized it is impossible to increase clock frequencies in a single chip without

overheating. Multiprocessors have became the promising architecture to leverage the in-

creasing density of transistors enabled by Moore’s law. This change also brings challenges

to programmers and system developers. In old days, the speedup of systems and software

depended heavily on the increasing frequency of the CPU. But now, in order to get fur-

ther improvement, programmers need to exploit parallelism in programs. This requires

that programmers rewrite their code into concurrent tasks, and coordinate these tasks with

dedicated and correct synchronization methods.

The most well-known technology to synchronize multiple threads is the mutual exclu-

sion lock [31]. A lock guarantees only one thread can hold it at any time. Programmers

associate locks with data, and then construct code regions (“critical sections”) that only

access that data while holding the lock. However, lock-based programming is notoriously

difficult and error prone: First, programmers have to choose the granularity of locks: im-

plementations that use a small number of coarse grained locks are usually straightforward

but limit concurrency; fine grained locking scales better but introduces latency, and could

possibly result in complicated locking protocols (e.g., using fine grained locks to implement

a concurrent balanced binary trees). Second, lock-based codes are not composable. Small

3
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critical sections protected by locks can not be reused to create big critical sections without

knowing the implementation details. Third, locking introduces problems such as deadlock

(e.g., two threads holding different locks and waiting for each other to release the lock),

livelock (threads are changing status without making forward progress), priority inversion

(lower priority threads holding the lock and blocking the higher priority threads), and con-

voying [46] (e.g., when a thread using hand-over-hand locking to traverse a linked list, it

blocks all other threads from bypassing it). All in all, it is difficult to write lock-based

programs that provide good performance while remaining easy to maintain and extend.

Transactional Memory (TM) [56] was first proposed more than two decades ago, as a

hardware mechanism for simplifying the creation of concurrent data structures. Subsequent

research has considered expanding the role of TM to a full-fledged programming model, in

which programmers use coarse grained transactions as the primary means of synchroniz-

ing threads [14]. As a language extension proposed in response to difficulties faced when

synchronizing programs with locks, it is easiest to understand the benefit TM offers to a

programmer via comparison: Lock-based programming requires the programmer to reason

about what code regions cannot run concurrently without risking a data race, and then

to craft a fine grained locking methodology that allows as much concurrency as possible

while also preventing incorrect concurrent executions. Transactional programming avoids

the second step: regions that cannot always run concurrently without affecting correctness

are marked as lexically scoped transactions, and then a run-time system, possibly accel-

erated by specialized hardware, runs transactions as sandboxed speculations. If a set of

speculations conflict, the run-time system rolls at least one back, and typically it also takes

some action to ensure that at least one will eventually complete. If concurrent speculations

do not conflict, then the run-time system allows them to complete. By monitoring the be-

havior of speculations at a fine granularity (e.g., addresses of individual memory accesses),

only true conflicts result in serialization, and thus more concurrency is possible than with

locks.

The potential of TM is not restricted to parallel programming. As CPU architectures

evolve through time, another essential hardware component is also improving: In the com-

puter memory hierarchy, storage has been considered either faster but volatile (e.g., CPU
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registers, DRAM) or slower but durable (e.g., flash, disk). Emerging Non-volatile Memory

(NVM) or Persistent Memory (PM) technologies such as 3D-Xpoint [89], PCM [67] and

STT-RAM [114] fundamentally reshape the memory and storage hierarchies by providing a

single memory that is dense, byte-addressable, fast, and able to retain its contents without

consuming energy.

Although PM can provide similar access latency, larger volume, and lower price-per-

byte than DRAM, the non-volatile feature of PM brings challenges for traditional system

and software designs. Since CPU caches and registers are expected to remain volatile,

and store operations can be reordered and delayed as they leave the cache and reach main

memory (unless directly using write-through instructions to bypass the cache), programmers

need to explicitly put fence and flush instructions into their programs to control the time

when updates happen in the PM. However, they cannot persist data across cache lines

without additional instrumentation. The overlap between TM and PM instrumentation is

substantial, which makes TM an appealing programming model for PM. This motivates

investigations of transactional programming models to access PM [15, 45, 66], and lead to

several concurrent persistent TM (PTM) libraries [18,59,69,116].

1.1 Transactional Memory

Transactional Memory (TM) [56] was originally proposed as a hardware extension to facili-

tate the creation of scalable nonblocking data structures. The appeal of TM is its simplicity:

a programmer need only wrap an operation inside of a language-level “transaction”, and

then a run-time system executes the transaction, making use of custom hardware and/or

compiler-generated software instrumentation. The run-time system monitors the low-level

memory accesses of transactions, and allows concurrent transactions to execute simultane-

ously as long as their memory accesses do not conflict (i.e., if concurrent transactions access

datum D, then they may not all commit unless none write to D; otherwise, at least one

must roll back and try again).

Figure 1.1 depicts a program executing under two different programming models. CS

represents a critical section. On the left side, the lock is used to protect those critical
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Figure 1.1: Runtime for Locks (left) and Transactional Memory (right)

sections. The right side represents the transactional execution. The lock serializes the exe-

cution of different critical sections, no matter whether they conflict or not. For transactional

execution, three threads launch the speculative execution concurrently. If no memory con-

flict happens during the execution, three transactions can commit. Otherwise, a contention

manager [48] will decide whether to delay the execution of conflicting transactions to let

others commit, or explicitly abort at least one transaction so others can make progress.

1.1.1 The C++ TM Technical Specification (TMTS) Overview

In C++ [61], TM is presented as a block construct: a lexically-scoped block of code is des-

ignated as a transaction, and any early termination or exception thrown from the block will

cause the TM system to commit or abort the transaction before returning control flow to

an outer scope. When multiple threads attempt transactions simultaneously, their behavior

should be indistinguishable from a situation in which transactions run one at a time. In

practice, the run-time system will typically execute transactions speculatively, using hard-

ware transactional memory (HTM) support or compiler instrumentation to run transactions

concurrently, track their memory accesses, detect memory conflicts, and abort/retry trans-

actions as necessary to ensure correct behavior. The implementation of TM is not, however,

part of the C++ TMTS.

The C++ TMTS [61] introduces an API containing a handful of keywords to support
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transactional execution. We limit our discussion to three: synchronized and atomic indi-

cate the beginning of a lexically-scoped transaction, and transaction safe indicates that

a function can be called from within a lexically-scoped transaction.

The primary feature of the TMTS is the notion of an atomic block. A program that uses

atomic blocks will produce output that is equivalent to an execution in which the atomic

blocks executed in some serial order, without overlap. However, under the hood, TM is

expected to be used to execute those blocks concurrently. The atomic block is allowed to

“cancel” itself. To support cancellation, the compiler must prove that an atomic trans-

action does not perform any operations that are externally visible before the transaction

commits (e.g., I/O operations). Thus atomic transactions can only contain functions with

transaction safe annotations, which indicate that the functions’ effects can be undone.

A synchronized transaction is free to perform irrevocable operations [118] (such as I/O

and system calls), which cannot be undone. Synchronized blocks cannot cancel. When

a synhronized transaction requires irrevocability, no concurrent transactions are allowed

until the irrevocable synchronized block completes.

1.1.2 Implementations

TM can be implemented in hardware (HTM), software (STM), or a combination of the two

(Hybrid TM).

When TM is implemented in hardware, two hardware instructions are used to indicate

the boundaries of a transaction [121]. The TxBegin instruction creates a register check-

point and informs the cache controller of the need to monitor memory accesses for conflicts

with other threads. The TxEnd instruction discards the checkpoint and informs the cache

controller that tracking is no longer needed. During the transaction’s execution, a set of

sufficient conditions on the behavior of the cache dictate whether the transaction remains

valid: if the transaction reads a location, then the corresponding cache line must remain in

the cache until commit; if the transaction writes a location, then the corresponding cache

line must not be evicted or shared with other processors before commit. If a condition is

violated, the transaction aborts, and the checkpoint is restored.

When TM is implemented in software, the compiler inserts function calls at the points
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where a transaction begins and ends. It also inserts a function call in place of each memory

access within the transaction [91]. These function calls connect to a library that per-

forms checkpointing, tracks the memory accesses of each transaction, and manages shared

metadata for detecting transaction conflicts. For simplicity, one may think of the shared

metadata as a table of readers/writer locks, which are acquired as a transaction progresses,

and released at the commit point of the transaction. STM algorithms vary with regard

to shared metadata implementation, protocols for detecting conflicts, and mechanisms for

buffering writes.

HTM has lower latency than STM: there are no per-access function calls or explicit

management of metadata (e.g., redo and undo logs). However, HTM is less flexible: there

is no opportunity to introduce any nuance in how conflicts are resolved (e.g., the contention

management for HTM can be summarized as requester-wins, which means a later trans-

action will always abort previous transactions if conflicts exist between them). In contrast,

STM can defer conflict resolution until at least one transaction is guaranteed to succeed.

Furthermore, HTM is tightly coupled with the cache controller, and thus hardware transac-

tions cannot access more data than fits in the cache, or survive interrupts and system calls.

Thus HTM does not guarantee forward progress and needs to have a fall-back strategy.

For transactions that deterministically fail to complete in hardware, a common approach

is to temporarily serialize all transactions, execute the failing transaction in isolation and

without hardware protection, and then re-enable concurrency. This serialized path hurts

performance. An alternative is to fall back to STM, known as Hybrid TM, which compli-

cates the design but allows more concurrency.

Hybrid TM combines the advantages of both HTM and STM. There are many ways to

implement Hybrid TM. One rule to design a fast Hybrid TM system is to maintain a pure-

HTM execution path as often as possible [13,22,101] instead of falling back to the software

path. To achieve the goal, Hybrid NOrec [22] replaces part of an STM implementation

with HTM. The strategy not only makes the HTM path short and unlikely to abort, but

also reduces intrinsic overheads when executing the STM path. The primary challenge

is to make sure the synchronization in the same path and across different paths are all

correct. RH-NOrec [78] takes a step further to introduce three execution paths to increase
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Algorithm 1: Example instrumentation performed by GCC

// Source Code (running sequentially)
1 synchronized
2 counter++

// Source Code
3 atomic
4 counter++

// Transformed Code
5 if TxBegin() == UNINST then
6 counter++

7 else
8 tmp = TxRead(&counter)
9 TxWrite(&counter, tmp+ 1)

10 TxEnd()

the scalability. Hybrid Cohorts [101] separates the HTM and STM execution via different

execution phases. This eliminates complex synchronization across two different paths, but

can sacrifice concurrency.

1.1.3 Case study: Transactional Memory in GCC

In this section, we describe the interfaces of TM supported by GCC. Programmers or soft-

ware developers can use such interfaces to employ TM for concurrency control. Moreover,

we illustrate how GCC transforms the transactional code to call its TM library. We also

demonstrate a practical general-purpose TM algorithm implemented by GCC, called libitm.

GCC’s TM support roughly complies with the TMTS [43]. Transaction boundaries,

and memory accesses made by a transaction, map to a run-time library that provides

numerous TM implementations (HTM, read-only-optimized STM, general-purpose STM,

and irrevocability-supporting STM). Algorithm 1 gives an example of how GCC translates

a transaction that increments a shared counter.

In the example, a call to TxBegin starts the transaction. Its return value indicates

if the transaction can skip per-access memory instrumentation (e.g., it is using HTM or

running sequentially as a synchronized block). If not, then each individual load and store

becomes a function call, specific to the current TM mechanism. Finally, TxEnd completes

the transaction. Despite the apparent simplicity, the ABI to support this instrumentation

includes more than 180 public functions: compiler optimizations introduce 40 read functions

and 30 write functions, to handle read-before-write, write-after-write, and other common

access patterns for 10 primitive data types. Even when HTM is used, the ABI requires two

function calls and a branch in every transaction; without HTM, there is a function call on

every access. For STM, TxBegin must also checkpoint the thread’s architectural state.
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Different STM algorithms vary in how they implement TxBegin, TxRead, TxWrite,

TxEnd and TxAbort. GCC’s general-purpose STM algorithm (setting ITM DEFAULT METHOD

= ml wt) is a privatization-safe version of TinySTM [39]. The algorithm uses a global

ownership record (orec) table [39] as the shared metadata implementation. Every mem-

ory location maps to an entry in this table. An Orec represents either the latest timestamp

at which the associated memory locations have been written, or that the location is currently

locked. Below are the implementation details:

TxBegin Set the checkpoint, read the global timestamp, and perform per-thread metadata

initialization.

TxRead Read a value directly from memory, and validate the read-set to make sure the

running transaction has a consistent view [49]. Abort the transaction if the timestamp of

any memory location in its read-set changed.

TxWrite Store the original value in a local undo log. Lock the Orec for this memory

location and update the value in-place.

TxEnd If it is a read-only transaction, commit. Otherwise, validate the read-set, get a new

timestamp, and set it as the value in the Orecs of all updated locations.

TxAbort Write back the values in undo log, unlock Orecs in the write-set. Then reset

the metadata and jump back to the checkpoint.

Logs are widely used in STM algorithms to guarantee that memory updates caused by

the aborted transaction should never be seen by other transactions or the non-transactional

execution. In the GCC STM algorithm, an undo log is used to capture the original value

before the in-place update. If a transaction aborts, the transactional effects can be undone

by replaying undo log contents. An advantage of the undo log-based design is that a read

can always read directly from memory. Many other STM algorithms (e.g., NOrec [24] and

RingSTM [111]) employ redo logs to buffer memory updates, writing back the redo log

contents only when the transaction commits. In this case, transaction aborts are cheaper,
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because they only need to reset the redo log. However, all read operations need to check

the redo log first to get the latest value. Such redirection could be expensive. In practice,

no algorithm dominates all others in all scenarios.

Another important design choice is contention management. When transactions repeat-

edly fail to commit, due to repeated conflicts with other threads, a TM implementation may

invoke a contention manager [103], which is responsible for delaying or aborting some trans-

actions in order to increase the likelihood that others may complete. Although contention

management policies vary, most TM implementations employ serialization as a last resort:

a transaction that fails too many times will request that all other transactions abort, and no

new transactions commence, until it completes. Unless the workload exhibits pathological

conflicts, serialization should be rare. In GCC, the default is for software transactions to

serialize after 100 attempts, and hardware transactions to serialize after two. Dynamically

tuning this parameter has been shown to have a significant impact on some workloads [30].

Any nontrivial amount of serialization, however, has a terrible effect on performance, par-

ticularly because serialization delays all active transactions, even those from completely

unrelated parts of the program (unlike lock-based critical sections, which are partitioned

by the locks that they acquire).

1.1.4 Advanced Features

Before introducing applications of TM, it is useful to review some more advanced con-

cepts from TM literature. We first discuss the state of the art in transactional condition

synchronization. Then we discuss issues related to memory consistency, which cause the

“privatization” and “publication” problems, and we describe the general solutions for both.

Condition Synchronization In most cases, a lock-based critical section in a traditional

concurrent program can be replaced by a transaction. This approach does not, however,

provide a means for conditional synchronization. The behavior of conditional synchroniza-

tion breaks atomicity by letting uncommitted transactions wait until the precondition is

fulfilled by other transactions. To that end, Harris et al. proposed a special form of self

abort, called retry [51]. When an in-flight transaction discovers that some precondition of
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Head 10 20 30

Initial	State

atomic {
tmp = head.next
head.next = null

}

use(tmp)

atomic {
n = head.next
use(n)

}

Thread	1 Thread	2

Figure 1.2: The privatization problem: If Thread 2 is executing speculatively, and is not
aware that Thread 1 commits, races may occur between accesses to the node containing the
value 10.

its completion does not hold, retry is used to immediately abort the transaction and undo

its effects. Abstractly, this casts condition synchronization as a scheduling operation, with

retry indicating that a transaction should not execute yet. Optimized implementations of

retry track the set of locations read by the retrying transaction, and do not re-attempt the

transaction until at least one of those locations is modified by another transaction. While

the TMTS does not support retry, it can be approximated (albeit somewhat inefficiently)

by using self abort from an atomic transaction.

Semantics and Ordering The TMTS does not separate transactional and nontransac-

tional memory: any location can be accessed both transactionally and nontransactionally.

In HTM systems, the cost of these semantics is negligible because HTM provides strong

atomicity. However, nontransactional memory accesses are not tracked by STM imple-

mentations. It presents a challenge to STM implementations known as the privatization

problem [109]: Although concurrent transactional and nontransactional access to the same

location is a data race (which has undefined semantics in C++), a thread that uses a trans-

action to remove an object from a shared data structure and accesses it nontransactionally

afterwards may conflict with another transaction that accessed the same object concurrently

but is still “cleaning up”. The problem is illustrated in Figure 1.2. Because Thread 2 is

executing speculatively, there can be a delay between the point where Thread 1 commits,

and the point where Thread 2 recognizes that it must abort. If Thread 1’s transaction tran-

sitioned data to a state where transactions can no longer access it, then Thread 1 expects to
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be able to access the data immediately upon commit. During the window between Thread

1’s commit and Thread 2’s abort, simultaneous accesses to the list are unsafe.

To avoid this problem, a thread must not access a privatized object nontransactionally

until every transaction that may have accessed that object has completed entirely (i.e.,

committed or aborted, including clean up). Since an STM cannot, in general, determine

when an object is privatized, implementations typically wait after committing any writing

transaction until every concurrent transaction has completed entirely; this waiting is called

quiescing. In the GCC TM implementation, threads quiesce after committing. The quiesce

operation involves waiting for all concurrent transactions to commit, abort and clean up or

validate.

1.2 Applying Transactional Memory in Real-World Applica-

tions

In this section, we discuss three important applications of TM. Transactional Lock Elision

(TLE) ought to be easily applied on legacy code, and it is taken for granted that using

TM to replace locks could result in better scalability. Concurrent building blocks usually

contain small critical sections, and they rarely have complex synchronization patterns or

irrevocable operations. Thus it is promising to leverage the properties of HTM to create

high performance and dedicated algorithms. Last but not the least, directly programming

with Persistent Memory (PM) has been shown to be difficult and error-prone [97,104], and

TM is becoming the most popular programming model for accessing data in PM due to its

ability to provide atomic and durable updates of multiple objects.

1.2.1 Transactional Lock Elision

Transactional Lock Elision (TLE) is the most straightforward use of TM in real-world

programs [94,96,100,102,128]. In TLE, a programmer takes as input a lock-based program

with less-than-desirable performance, and replaces locks with TM, hoping that in so doing,

unnecessary serialization can be avoided. The programmer in this case thinks of TM as a

mechanism for achieving lock elision, and is encouraged to ignore advanced features of the

13



www.manaraa.com

TM implementation.

We take HTM and its lock-based fall-back path as an example to illustrate how TLE

works. The program executes the HTM fast path first, then falls back to a lock-based

execution if the HTM cannot successfully commit. This programming model requires syn-

chronization between the HTM and locks. Suppose a thread is executing in the lock-based

critical section and delays in the middle of its execution. At this time, HTM transac-

tions could commit if there was no synchronization between HTM and the lock-based code.

Thus, concurrent execution of HTM transactions and lock-based code may introduce non-

serializable behavior. To solve this problem, threads have to check the lock state at the

beginning of every HTM attempt. If the lock is held by another thread, then the thread

waits for the lock to be released. If the lock is available, the thread continues executing

the HTM path. If the lock is acquired by another thread during the HTM execution, HTM

will abort because of the change to a location (the lock) that it previously read. By doing

so, the safety of the concurrent program is guaranteed. However, in order to get better

performance, the execution path should remain in HTM as much as possible in order to

avoid serialization.

Algorithm 2 presents the pseudocode of an HTM-based TLE retry strategy. More com-

prehensive applications can be found in [86]. We take Intel’s HTM interface, named Re-

stricted Transactional Memory (RTM), as an example. In lines 4, 7, and 9, RTM provides

functions for start, explicit abort and successful commit of the transaction. The trans-

action begins at line 5. Status either indicates that the transaction successfully launched,

or it contains the abort code. Line 6 to line 9 are the code executed by RTM. If at any

time a transaction aborts, the execution path goes to line 11. Line 12 checks whether HTM

aborted because the lock was held by another thread. Line 14 checks whether HTM aborted

because of data conflicts. In line 16, excessive aborts or capacity conflicts cause the thread

to execute the lock-based path (line 17–19). Otherwise, it retries the HTM path.

The retry policy in this code example is simple. There could be more complicated ones

designed for specific applications. Regardless, there are two things we need to take care

of: First, the algorithm needs to check the lock status right after HTM starts (line 6), this

prevents lock-based code and HTM from running at the same time. Second, we need to wait
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Algorithm 2: Pseudocode of Transactional Lock Elision (TLE) with Intel RTM

1 RetryCount ← MAX RETRY
2 RETRY:
3 waitForLockToBeReleased()
4 status ← xbegin() // start the transaction by calling xbegin()
5 if status = XBEGIN STARTED then

// inside of HTM execution
// check whether the lock has been hold

6 if check(lock) then
7 xabort(REASON)

8 /* critical section code here */
9 xend() // successfully commit the transaction

10 Return

11 else
// HTM abort

12 if status ∧ XABORT EXPLICIT then
13 goto RETRY // the lock is held by other thread

14 if status ∧ XABORT CONFLICT then
15 RetryCount ← RetryCount - 1 // data conflict

16 if status ∧ XABORT CAPACITY ∨ RetryCount = 0 then
// HTM abort due to capacity or already attempted MAX times, fall back to slow path

17 acquire(lock)
18 /* critical section code here */
19 release(lock)
20 Return

21 goto RETRY

until the lock is available before we can try HTM (line 3). Suppose one thread is holding the

lock: then all other threads that are trying HTM transactions must continuously abort due

to the lock being held. Without care, they could fall back to lock-based code after reaching

the maximum retry threshold, and execution would degrade to that of a lock-based program.

I/O Problems The effort to standardize TM support in C++ [3] has, to date, taken

a pragmatic approach with respect to I/O. Clearly, if transactions are to replace lock-

based code, then it must be possible to perform I/O operations on shared data, despite

the possibility of concurrent attempts to access that same shared data. However, I/O

performance has not seen much attention. In particular, it has been assumed that an I/O

transaction can be statically identified by the programmer, and that it is acceptable to

serialize all transactions at the time when I/O is attempted, so as to prevent concurrent

accesses to the data during the I/O operation. This mechanism, broadly, is known as

“irrevocability” [91,110,112,118].
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Irrevocability Irrevocability is a coarse-grained mechanism, which allows the execution

of arbitrary operations within a transaction, even if those operations cannot be undone.

Examples include accessing device registers, arbitrary system calls, communication with

other threads via volatile and atomic variables, and I/O. Any student of Amdahl’s law

will immediately recognize global serialization of transactions as a potentially significant

bottleneck. Indeed, Wang et al. inadvertently discovered as much in their exploration

of transactional condition synchronization for the PARSEC benchmark suite [117]: in the

“dedup” application, output by one pipeline stage eliminates all concurrency and scaling

from an application whose lock-based equivalent scales well. The one-size-fits-all nature

of irrevocability is costly, but its simplicity is appealing: difficult tasks are no harder with

irrevocable transactions than with locks. For example, irrevocability ensures low-level atom-

icity and durability of output: in applications with durability constraints, it is essential that

programmers control the timing of calls to fsync, and the atomicity of an fsync call with

respect to preceding write operations, and irrevocability affords this level of control.

Deferred operations Apart from irrevocability, the only other promising approaches to

transactional output rely on deferred operations. Many output operations, such as logging

and error messages, can be achieved via deferred operations [14, 91, 102]. More formally,

Volos et al. presented a general mechanism for deferring I/O in software transactions,

via buffering and “shadow” file descriptors [115]. Unlike irrevocability, deferred output

operations do not constrain concurrency. However, they suffer from two problems of their

own. First, to ensure that deferral is correct, it is necessary to create an explicit copy

of the data to output. This copy is in addition to any copying that occurs as part of a

system call, and while it can be optimized in certain cases, it nonetheless introduces latency

concerns. Furthermore, for hardware transactions, buffering may result in the working set

of the transaction exceeding cache capacity, which could lead to transactions serializing.

The second problem with deferred output is that real programs often care about the return

value of a write system call. When the write is delayed, it seems that the continuation

of the transaction must either (a) ignore the return value, or (b) be scheduled after the

output, as a second transaction that is not atomic with the first.
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More discussion about I/O problems and existing solutions appears in Section 1.4. In

Chapter 4, we introduce our solution: atomic deferral, an extension to TM that allows

programmers to move costly operations out of a transaction without changing program

behavior. That is, the transaction and its deferred operation appear to execute as one unit

from the perspective of other transactions, and the resulting execution remains serializable,

for both hardware and software TM implementations.

Apart from I/O, there are many unsolved problems (e.g., third-party libraries, complex

synchronization patterns) which prevent TLE from being ready to use in production. In

Chapter 3, we discuss other obstacles and propose ad-hoc solutions. Our experience are

gained from applying the C++ TMTS to elide locks in two real-world programs, PBZip2

and x265.

1.2.2 Facilitating the Implementation of Concurrent Data Structures

Concurrent data structures are fundamental building blocks in modern programs. In many

applications, the performance of concurrent data structures determines the scalability of the

program. TM facilitates the implementation of concurrent data structures for the following

reasons:

• Synchronization in concurrent data structures is relatively straightforward;

• The size of critical sections fit within HTM capacity in most cases;

• Data structures rarely contain complex concurrency control like irrevocable instruc-

tions or condition variables;

• TM is particularly appealing for data structures and applications with irregular or

hard-to-predict memory accesses (e.g., the rebalancing operations of a balanced binary

search tree mutation), which are difficult to implement efficiently using locks.

Based on that, there are many research papers leveraging TM to craft concurrent data

structures with better scalability [27,32,63,75,120].

Balanced Binary Search Trees (BST) are commonly used in a wide range of applications

because they provide a logarithmic bound on search operations. In a concurrent environ-

ment, it is notoriously difficult to achieve satisfactory performance by using locks. Two

reasons cause this dilemma: rebalancing and indirect deletion. Rebalancing refers to the
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problem where an insert or remove operation causes imbalance in the tree, and the oper-

ation must restore balance before returning in order to guarantee asymptotic complexity

for future operations. Indirect deletion happens when a target node has two children. The

target node has to be replaced by its successor node (based on value) and the real delete

happens at a leaf node. Fine-grained locking is difficult for balanced BST because when

rebalancing happens, the thread traverses upward, which is opposite to the direction the

thread traverses to search the elements from root to leaf. This behavior makes lock acquires

and releases difficult, because it is impossible to prevent deadlock by acquiring locks in a

canonical order. Lock-free approaches are similarly difficult. Existing ways to solve the

problem include relaxing the balancing conditions or using coarse-grained synchronization.

Another way is to use Read-Copy-Update(RCU) [79]. However, it increases the overhead of

copying existing subtrees when changes are needed, and does not allow concurrent writes.

Wrapping entire BST functions in HTM transactions is one option. The scalability for this

approach will largely depend on the size of the BST and the number of write operations.

Siakavaras [32] proposed a new method, which combines HTM and RCU, to implement

concurrent balanced BST. The algorithm achieves several appealing results: It allows con-

current update, and it introduces negligible synchronization overhead on reading operations.

Although the algorithm suffers from many problems, such as live locking and memory leaks,

it provides the best performance among existing algorithms for concurrent, strictly balanced

BST.

In previous work [75], we also discovered that HTM can be applied in many cases to

accelerate existing non-blocking data structures. For example, hardware instructions such

as CAS are directly supported by x86 processors, but only for one machine word. Software

emulations of CAS can support multiple words, such as k-compare-and-swap (KCAS) [76].

Wait-free KCAS is expensive but can significantly simplify the design of non blocking data

structures. In this case, HTM can be applied as the simple and fast path for KCAS (atomi-

cally updating multiple memory locations). Another example is that update operations for

non-blocking data structures usually are implemented by copy-on-write. Updating a bucket

in nonblocking hash map [74] would require copying the whole bucket. It is expensive if the

bucket contains many elements or the memory capacity is limited. HTM can provide a fast

18



www.manaraa.com

path for threads to update the bucket in-place. In both cases, synchronization between the

fast path and fall-back path is straightforward.

Memory Reclamation Problems Most non-blocking concurrent data structures in re-

search papers do not provide memory management in their implementation [11, 21, 32, 54,

75, 84, 95]. One possible reason is that memory management incurs latency. Hazard point-

ers [83] allow a data structure node to be reserved by a thread before it is accessed. If another

threads intends to delete the node, it has to make sure no one is accessing it by checking

the hazard pointer. This method introduces significant overhead because each node access

will incur a write fence. Hazard pointers do not allow immediate memory reclamation when

there are other threads accessing the candidate node. Epochs [41] have less latency but will

delay the reclamation if one thread is blocked in an earlier epoch. It is difficult to bound the

time between logical removal and physical reclamation [34], and many scalable techniques

accept unbounded worst-case delay for a bounded [83] or unbounded [26] number of items.

To avoid these delays, a system might fall back to complex or expensive measures when the

amount of unreclaimed memory becomes too great [5, 10, 12, 19]. However, there will al-

ways remain programs whose correctness depends on memory being reclaimed immediately,

hence the need for precise memory reclamation.

In section 1.4, we discuss the incompatibility between non-blocking techniques and pre-

cise memory management. By leveraging the immediate abort property of HTM when

accessing de-allocated memory locations, we propose revocable reclamation to bridge

the gap between them. A detailed solution and implementation are described in Chapter 2.

1.2.3 Persistent Transactional Memory

Non-volatile byte-addressable memories present an exciting new opportunity for creators of

high-performance systems. With non-volatile main memory (NVM) or persistent memory

(PM), a program can avoid sources of latency associated with writing to traditional storage

media, and instead achieve persistence through memory writes to an PM whose latency is

within a constant factor of the speed of RAM.

Due to byte-addressability and fast access, PM is likely to be accessed directly through
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Figure 1.3: In-memory application seamlessly persists across power failures

CPU load and store instructions. Combining with non-volatility, PM can dramatically

change how software persists data. As we can see in Figure 1.3, data remain volatile unless

they reach persistent memory. However, the memory controller decides when and in what

order the data write to PM due to hardware optimizations for writes. Without buffering

and ordering methods, traditional programming models may cause the program reaching

an unpredictable and unrecoverable state when a power failure happens.

Transforming a program to use PM can be nontrivial. Consider an application that

persists program data via the file system interface. If the program crashes between file writes,

or fails in a way that corrupts RAM, the integrity of the persisted data is not compromised.

Similarly, if a fault occurs during a file write, the operating system or hardware (e.g., RAID)

is responsible for ensuring write integrity. In contrast, if program memory is also the storage

medium, then it is the program’s responsibility to ensure the integrity of the data in the

face of program crashes at arbitrary points in the program’s execution.

Three programming models have emerged to address this challenge [87]. Figure 1.4

compares using a PTM library, using a file system interface, and directly programming

with PM to insert a new node into a persistent doubly linked list:

• (a) represents the original volatile code on DRAM.

• (b) shows the code using PTM library. With persistent transactional memory, pro-
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a b

c

c->prev = a
c->next = b
a->next = c
b->prev = c

TX_BEGIN { 
c->prev = a
c->next = b
a->next = c
b->prev = c

} TX_END  …

redo_log [c]->prev = a
redo_log [c]->next = b
redo_log [a]->next = c  
redo_log [b]->prev = c

clwb(&redo_log)
sfence

clwb(&status.REDO)
sfence

redo_log.write_back()
clwb(&all_wb_items)

sfence
clwb(&status.FINISH)

sfence
redo_log.clean_up()

(a) Original 

(b) PTM (d) Ad-hoc techniques

… …

pwrite(fd, &c, sizeof(c), offset_c)
pwrite(fd, &a, sizeof(a), offset_a)
pwrite(fd, &b, sizeof(b), offset_b)
// need a flag to indicate the 
// completion of insert
pwrite(fd, &flg, sizeof(flg), 
offset_flg)
…

(b) Filesystem

Figure 1.4: Inserting node c to a doubly linked list under different programming models

grammers mark the regions of code, and a run-time system tracks accesses to PM

within those regions. The run-time system ensures the atomicity of transactions,

using roll-forward or roll-back techniques.

• (c) represents issuing system calls to the PM-aware file systems. Implementing a file

system on the PM would simplify programming on PM. Although it looks simple and

familiar, many of the performance benefits of PM (such as random byte-addressable

access) are lost.

• (d) demonstrates ad-hoc techniques, through which the programmer uses custom as-

sembly instructions to flush data from caches to the NVM, and fences to ensure

ordering between these flushes and other accesses to program data. To make sure

the doubly linked list remains consistent across failures, four rounds of interacting

with PM are necessary: Persisting the redo log; Changing the status to indicate

all updates in the transaction can be recovered from the redo log; Writing back the

content in the redo log and making them persistent; Updating the status to finish

the operation.

For applications with irregular data access patterns, and applications that rely on ad-hoc

data structures, the most promising model for interacting with PM is a transactional model.

In many ways, PTM resembles software transactional memory: both need instrumentation
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of memory accesses. Many researchers [15,45,66] have implemented PTM by transforming

existing STM algorithms. However, we could not find any previous research comparing the

performance of different PTM algorithms and summarizing the experience via transforming

them.

In section 1.4, we present preliminary findings for transforming existing STM algorithms

to support data persistence. Details of our work on supporting data persistence are discussed

in Chapter 5.

1.3 Dissertation Motivation

Despite significant interest and effort from the research community, TM has not yet seen

widespread use in industry. The lack of adoption is particularly surprising given that (a)

vendors have supported hardware TM (HTM) in commercially-available processors since

2012 [86], (b) compiler support for software TM (STM) has been present in the GCC

compiler since 2012 [42], (c) a Technical Specification for using TM in C++ programs (the

TMTS) was announced in 2015 [61], (d) Intel has released NVML [59], a library with a

transactional interface to support programming on non-volatile memory.

To understand the problem, we conducted extensive experiments in applying TM in

real-world applications. We divide applications into four categories:

• Sophisticated software such as the MySQL InnoDB engine [119], the PBZip2 parallel

file compression/decompression toolkit [44], and the x265 media encoder/decoder [93].

• Primary parallel programming benchmarks such as the PARSEC Benchmark Suite [8]

and the Stanford Transactional Applications for Multi-processing (STAMP) [85].

• Non-blocking and lock based concurrent data structures [36,62,71,73,74,95].

• Benchmarks for persistent memory, such as a B+ tree microbenchmark, On-line Trans-

action Processing Benchmark (TPCC) [113] and Telecom Application Transaction

Processing Benchmark (TATP) [107].

Some of these applications contain only small critical sections, and naively replacing

locks with transactional blocks can improve performance and programmability. Even in

these cases, it is possible that the performance will get worse. The costs may originate
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from the latency of STM, or continuous transactional aborts triggered by the workload.

We can alleviate these problems by applying different STM algorithms or different retry

policies. Part of the difficulty of programming with TM is insufficient infrastructure. We

spent much time bypassing or reimplementing libraries in our TLE work because many

standard libraries lack TM support [65].

The dissertation mainly focuses on applications that can not be transactionalized with-

out dramatic performance degradation or significant effort. For persistent memory, the

research on transactional execution time for PM is still in the early stages. Thus we evalu-

ate the performance of existing TM algorithms with data persistence support to motive the

future persistent transactional memory designs. We believe introducing these challenges

and proposing techniques that tailor TM to them makes a valuable contribution to the

acceptance of TM.

1.3.1 Thesis Statement

In this dissertation, we demonstrate that existing TM platforms and common parallel pro-

gramming models are not compatible with each other, and even state-of-the-art TM algo-

rithms are not optimal when transformed to support data persistence. We then propose,

implement, and evaluate solutions. Our work can be summarized as diversifying the trans-

actional programming model, extending the transactional memory API, and enhancing

transactional memory implementations with more features that enable TM to fit the needs

of real-world applications.

1.4 Contributions

In this section, we summarize our observations obtained from the practical experience of

applying transactional memory in real-world applications. None of the applications are

trivial in practice. Following each observation, we either describe our method to solve the

problem or present our experience as future research guidelines so that readers can learn

from them. We also present related work (if any) and compare it with the ideas we propose.

Each topic is expanded in an independent chapter.
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Observation 1: Non-blocking techniques are not compatible with precise

memory reclamation.

In traditional lock-based code, when removing a node from the data structure, the node

is guaranteed to be exclusively accessed by the removing thread. Thus it is safe to be

deleted immediately. For concurrent non-blocking data structures, it is either expensive or

impossible to provide information about how many threads are accessing the node when

the node is unlinked from the data structure. Thus immediate reclamation of the node is

not safe.

HTM not only provides hardware support for speculative execution (non-blocking), but

also allows threads to access the data which already may be reclaimed by other threads

(this causes HTM transactions to abort immediately). Notice that without HTM, such

memory accesses lead to programs crashing (e.g., segmentation faults). This property makes

immediate memory reclamation possible for non-blocking data structures implemented with

HTM.

Wrapping the entire operation on a data structure in one hardware transaction would

make non-blocking techniques compatible with precise memory reclamation. However, like

critical sections in lock-based implementations, it is desirable to keep transactions as small

as possible, in both time and space (i.e., duration and number of locations accessed): smaller

transactions are less likely to conflict and abort. Furthermore, existing hardware support

for transactional memory (HTM) [86] typically has capacity limits, which further makes

this idea impractical.

We introduce a mechanism to link consecutive transactions by “reserving” a location at

the end of a transaction and checking the reservation at the beginning of the next trans-

action, aborting if the location has changed since the previous transaction committed. By

doing so, we link a challenge in TM to the challenge of providing memory safety for non-

blocking data structures. That is, now TM must deal with the question of what happens

if a reserved location is reclaimed? To avoid this problem, we introduce revocable reserva-

tions, which allow threads to revoke all reservations to a specified location. A subsequent

transaction that checks a reservation will see that it has been revoked and therefore not

attempt to access the formerly reserved location. By leveraging features of HTM, particu-
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larly the immediacy of aborts, concurrent operations are able to revoke these reservations

and immediately reclaim memory, without compromising correctness. The implementation,

application and evaluation of revocable reservations are described in Chapter 2.

Observation 2: Complex patterns of synchronization limit the applicability

of a transactional programming model.

To understand the performance of TLE in real-world applications, we applied the C++

TMTS to elide locks in two real-world programs: the PBZip2 file compression tool, and the

x265 video encoder/decoder. In both cases, the programs were already carefully crafted to

avoid lock contention and to scale.

TLE ought to be easy: the programmer need only replace each lock-based critical sec-

tion with a transaction. Unfortunately, our experience does not validate the expectation:

In x265, the most important critical section was not serializable, and we could not trans-

actionalize it without understanding several thousand lines of code, and changing the way

in which threads interacted with one of the central queues in the program; In the case of

PBZip2, we found that naively transactionalizing the code works. However, the perfor-

mance was not competitive to the lock-based version unless we extended the C++ TMTS

with a mechanism for relaxing the ordering guarantees on certain transactions.

One contribution made in Chapter 3 is proposing language-level support for transac-

tions to dynamically disable quiescence. Prior work by Yoo et al. [122] suggests that in

some workloads, quiescence can be disabled for all transactions. Yoo et al. also showed

that in such cases, disabling quiescence for those workloads had a significant improvement

on performance. Unfortunately, such an approach is not compositional: any change to the

program requires whole-program analysis to determine if globally disabling quiescence re-

mains correct. It also offers no value when transactionalizing PBZip2, because there are few

transactions that must privatize (consumer and producer model). We studied transactional

memory benchmarks and data structure benchmarks to further explore how quiescence

affects the performance of TLE.

By overcoming these difficulties, Chapter 3 demonstrates the first example of the TMTS,

as implemented in the GCC compiler, improving the performance of real-world code. More-

over, the improvement spanned both hardware and software implementations of TM.
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Algorithm 3: Irrevocability-induced delays

// Output thread
1 synchronized
2 elt.prepare(data)
3 net send(&elt)
4 elt.sent← true

// Clean-up thread
1 atomic
2 if elt.sent then
3 elt.log()
4 elt.reclaim()

5 else
6 retry

// Unrelated thread
1 atomic
2 use(other)

Observation 3: Serialization overheads for irrevocable and long-running op-

erations are dramatic.

Broadly speaking, there are three causes of serialization in modern TM: irrevocability,

contention management, and capacity management. Capacity management refers to situ-

ations in which a transaction’s memory footprint is either too large for the TM to handle

(as in the case of HTM), or causes too much logging overhead (in STM). In either case, the

TM implementation may choose to serialize transactions so that the large transaction can

complete efficiently.

When we transactionalized the MySQL Innodb engine and PARSEC benchmarks, we

found many I/O operations in critical sections. Moreover, there are long-running computa-

tional operations in the PARSEC dedup benchmark, which become the main bottleneck for

TLE. Such operations make TLE perform significantly worse than the original lock-based

programs.

During profiling, we found that the composition of serialization and quiescence created

unexpected latency in transactions (much worse than what was already known). Consider

the code in Algorithm 3. An output thread updates an element, using some shared data,

and then sends it over the network. The update and send are expected to be a single atomic

operation. When the update communication is complete, then a clean-up thread will wake

(via retry), log the element, and reclaim its memory. Meanwhile, some other transaction

is accessing unrelated data.

When the output thread reaches line 3, GCC’s STM will wait for the other transactions

to complete, and its HTM support will cause the other transactions to abort. Note that

the “unrelated” thread’s transaction does not touch any data used by the output thread.

It should neither be aborted, nor cause a delay in the output thread. However, incomplete
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information about which transactions might be active, and what data they might touch,

necessitates conservative behavior in the TM implementation.

If net send were safe to call from a transaction, we could still observe significant delays

in STM. Suppose that the output thread and an unrelated thread ran concurrently. When

the unrelated thread was ready to commit, quiescence would demand that it idle until the

output thread completed, in order to ensure that any potential use of privatized data would

not race with the output thread’s upcoming reads and writes.

These sorts of delay, and the delays that arise from irrevocable execution, also manifest

when transactions are serialized to ensure progress. Worse, since TM does not allow the

programmer to partition transactions, any serialization or quiescence in any transaction

will incur overhead proportional to the total number of active transactions at that instant.

In short, I/O, long-running operations, and high contention can result in delays for all

concurrent transactions.

XCall Rossbach et al. [99] were first to use locks to coordinate accesses to shared memory

between transactions and non-transactional code. Volos et al. [115] followed, with a com-

prehensive approach to deferral focused on enabling transactional system calls (including

I/O). Volos extended the OS with “sentinel” locks, which allowed software transactions to

exclusively access file descriptors and other resources. Using these sentinel locks, output

operations could appear to execute in the context of a transaction, but actually be deferred

until after the transaction committed.

Escape actions Another approach is the use of escape actions. These may be ad-

hoc [131], or formalized as open nesting [90] or transactional boosting [53]. These mecha-

nisms provide a way to avoid logging overhead in complex operations, and also to perform

I/O operations within transactions.

However, these techniques are rarely compatible with HTM [70] (an exception is the

IBM POWER TM [86]). Additionally, in STM, these techniques reduce the transactional

footprint, but still run in the context of an active transaction; consequently, they retain

the quiescence-associated delays as we described earlier. Like traditional deferral, these
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techniques also require ad-hoc approaches to creating compensation actions and dealing

with errors.

To solve the problem, we introduce atomic deferral in Chapter 4. Atomic deferral is a

general mechanism for moving code out of transactions, but retaining serializability, through

the composition of TM with two-phase locking. We successfully applied atomic deferral

in the above applications. It not only offers an implementation-agnostic technique for

performing output operations and other system calls within transactions, but also improves

performance. It also enables the movement of costly operations outside of the constrained

environment presented by a general-purpose TM. Our work bears resemblance to, and is

inspired by, those prior works in the areas of irrevocability, deferral, transactional system

calls, and escape actions. Take the XCall as an example. Volos’s work is more comprehensive

than ours, as it deals with a wide array of system calls, and requires less programmer effort

to perform transactional I/O. On the other hand, our work is substantially simpler: it

does not require a deadlock detection algorithm within the OS, or any OS modifications; it

is accessible without performing system calls, and is hence compatible with HTM, and it

allows the programmer to control the granularity at which operations are serialized (e.g.,

in the case of MySQL’s file descriptor pool, where one lock abstractly covers an unbounded

set of file descriptors). Our approach also makes it easier for programmers to handle timing

and errors in deferred operations.

Observation 4: Although there is a mechanical transformation by which

algorithms for software transactional memory can be transformed to work with

persistent memory, the specifics of the programming model matter significantly

for persistent transactional memory design.

The transformation from STM to PTM is not difficult. We demonstrate two main

approaches here: With undo, a persistent transaction (PTx) writing to location Wi must

first write the current value at Wi to its undo log. Then it must persist that write (via

clwb and a memory fence). Finally, it can update Wi with a new value. In this manner,

if the system crashes before the PTx completes, all of its Wi can be restored to their state

prior to the PTx’s execution. When the PTx completes, it simply discards its undo log.

In contrast, with redo, a PTx writing to Wi places the new value in a private redo log.
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Figure 1.5: PTM execution on STAMP benchmarks, using the default parameters

Subsequent reads of Wi must check the log to ensure processor consistency. When the PTx

is ready to complete, it must persist the log (via clwb instructions and a memory fence),

then replay its writes from the log. If the system crashes before the replay is complete, then

the replay must be re-done after the system restarts. Note that even when a PTM does not

support concurrent transactions, it must use either undo or redo.

First, we show the greater potential of PTM for persistent memory compared to lock-

based persistence code. We measure the impact of naively transferring STM algorithms to

support data persistence on a Dell PowerEdge R640 with two 2.1GHz Intel Xeon Platinum

8160 processors and 192GB of RAM. Each processor has 24 cores / 48 threads, runs Red

Hat Linux server 7.4, and LLVM/Clang 6.0 with O3 optimization. Experiments are the

average of five trials; to avoid NUMA effects, we limited execution to a single CPU socket.

Note that on this system, the RAM is not persistent, but clwb incurs accurate latencies.

We compare variants of four TM algorithms. In CGL, every transaction is protected by
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the same coarse-grained lock. In Orec, locations hash to entries in a table of 1M locks [39].

NOrec detects conflicts using values instead of locks [24]. Ring uses bit vectors to express

the read and write sets of transactions [111]. Our default version of each algorithm is

privatization-safe. “Eager” indicates undo, and “lazy” indicates redo. NOrec and Ring are

always lazy. All experiments are run on the STAMP benchmark suite [85].

Figure 1.5 presents results for our naively implemented PTM algorithms. Our first

finding is that persistence latencies discourage CGL as early as 2 threads. This is in contrast

to the volatile setting, where the break-even point is 4-8 threads, and suggests that PTM

is more appropriate for persistent memory than TM is for volatile memory. The second

finding is that redo substantially outperforms undo, except when there is a high incidence

of read-only and read-mostly transactions (genome).

There is a mechanical transformation by which algorithms for software transactional

memory can be transformed to work with persistent memory. This transformation does not

take into account many differences, such as the persistent and volatile programming models,

the costs for flush and fence in memory instrumentations and commit, and the overhead for

TM semantics.

Secondly, we observe a fundamental difference between NVM and TM. In TM, the

instrumentation requirements of a location are a dynamic property of how that location

is used. In PM, the instrumentation requirements of a location derive from the physical

characteristics of the underlying device. Languages are likely to require that all accesses to

PM are performed from transactions, and hence every access to the PM will be instrumented.

Thus the above concerns do not apply to PTM transactions, except in the unlikely case

that they also access shared volatile memory. Thus in the common case, the following

optimizations become possible:

1. Undo and redo logging can occur at a coarse granularity (e.g., half cache line) without

risking granular lost updates.

2. Privatization-related overheads at the end of transactions will not be necessary.

3. Irrevocability-related overheads at the beginning of transactions can be eliminated.

Note that (1) will reduce a constant overhead that occurs on every access in redo-based

systems, (2) will reduce an overhead that is linear in the number of threads, and (3) will
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Threads 1 2 4 8 16 24 32 48
cgl eager 1.18 1.03 1.05 1.05 1.02 1.03 1.18 1.10
cgl lazy 1.19 1.17 1.12 1.13 1.10 1.79 1.27 1.11
orec eager 1.00 1.06 1.15 1.45 2.90 4.22 4.77 4.82
orec lazy 1.03 1.10 1.25 1.70 3.24 5.79 6.47 6.84
norec 0.98 1.06 1.18 1.40 1.70 2.07 2.12 2.21
ring 1.16 1.23 1.28 1.35 1.52 1.73 1.96 1.85

Table 1.1: Microbenchmark speedup for optimized PTM.

eliminate a memory fence and branch.

Table 1.1 presents preliminary speedup results for a data structure microbenchmark

(RBTree, 16-bit keys, 80% lookup), with each PTM optimized according to the description.

We observe two trends. The first is that coarsening the granularity of logging has a more

significant impact on lazy algorithms. The second is that avoiding quiescence (only appli-

cable to Orec PTM) is a powerful optimization, which appears to favor Orec-Lazy in all

cases.

There are many optimizations we could apply to PTM exclusively, which makes the

original best STM algorithms not optimal for PTM design. In chapter 5, we discuss our work

supporting data persistence, which includes two programming models for PM; performance

comparison between different PTM algorithms under various PM benchmarks; multiple

runtime optimizations for PTM design. We are targeting at motivating the future persistent

transactional memory designs.

1.5 Organization

The remainder of this dissertation is organized as follows:

• In Chapter 2, we introduce revocable reservations, a transactional memory mechanism

to reserve locations in one transaction and check whether they are unchanged in a

subsequent transaction without preventing reserved locations from being reclaimed in

the interim. We describe several implementations of revocable reservations, and show

how to use revocable reservations to implement lists and trees with a transactional

analog to hand-over-hand locking. Our evaluation of these data structures shows that

revocable reservations allow precise and immediate reclamation within transactional

data structures, without sacrificing scalability or introducing excessive latency.
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• In Chapter 3, we describe our experiences employing TLE in two real-world programs:

the PBZip2 file compression tool, and the x265 video encoder/decoder. We discuss the

obstacles we encountered, propose solutions to those obstacles, and introduce open

challenges. In experiments using the GCC compiler’s hardware and software support

for TM, we observe that both are able to outperform the original lock-based code,

potentially heralding the readiness of TM to be used more broadly for TLE, if not for

truly transactional styles of programming.

• In Chapter 4, we introduce atomic deferral, an extension to TM that allows pro-

grammers to move long-running or irrevocable operations out of a transaction while

maintaining serializability: the transaction and its deferred operation appear to exe-

cute atomically from the perspective of other transactions. Thus, programmers can

adapt lock-based programs to exploit TM with relatively little effort and without sac-

rificing scalability by atomically deferring the problematic operations. With limited

burden on programmers, our atomic deferral allows transactions to write to files, han-

dle expensive functions, interact with the OS, and even manipulate program locks

without sacrificing scalability. We demonstrate this with several use cases for atomic

deferral, as well as an in-depth analysis of its use on the PARSEC dedup benchmark,

where we show that atomic deferral enables TM to be competitive with well-designed

lock-based code.

• In Chapter 5, we consider two models for programming persistent transactions. We

show how to build concurrent persistent transactional memory from traditional soft-

ware transactional memories. We then introduce general and model-specific opti-

mizations that can substantially improve performance. The final result is surprising:

despite increased latencies due to added flush and fence instructions, required to cor-

rectly order stores to the NVM, persistent transactions achieve lower latency and

higher scalability than classic memory transactions.

• Chapter 6 concludes and discusses future research directions.
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Chapter 2

Supporting Precise Memory

Reclamation

In this chapter, we present solutions to extend transactional memory to support precise

memory reclamation on concurrent data structures without introducing performance degra-

dation. The original work was published in “Hand-Over-Hand Transactions with Precise

Memory Reclamation” at the 29th ACM Symposium on Parallelism in Algorithms and

Architectures [126].

2.1 Introduction

Many operations on pointer-based data structures can be partitioned into a read-only traver-

sal phase followed by an update phase. In the traversal phase, the operation follows a chain

of nodes until it finds a node satisfying some condition. The found node is updated in

the update phase. (The update phase is empty if the operation does not modify the data

structure.) Some lock-based implementations reduce the size of critical sections of such

operations by using hand-over-hand locking : An operation traverses the data structure by

acquiring the lock for each node it traverses and then releasing each lock after the lock to

the next node is acquired. The locks for all nodes accessed in the update phase must also

be acquired, and they are not released until the end of the operation. Thus, during the

traversal phase, each lock is held only while the next lock in the chain is acquired. This
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series of overlapping critical sections gives rise to the term hand-over-hand locking, and

guarantees the atomicity of the entire operation.

Early release [55] and elastic transactions [40] achieve a similar effect for transactions

by removing locations from a transaction’s read set so that subsequent updates to the

“released” locations do not cause the transaction to abort. Although they do not make

transactions smaller, these techniques make transactions less likely to abort by reducing

the size of their read sets. However, they cannot be applied to transactions executed by

HTM, which provides no support for releasing locations.

We propose to hew more closely to hand-over-hand locking by dividing an operation’s

traversal phase into several read-only transactions, and executing the update phase as a

single transaction. However, we cannot ensure atomicity by overlapping transactions as

hand-over-hand locking overlaps critical sections. Instead, we introduce a mechanism to

link consecutive transactions by “reserving” a location at the end of a transaction and

checking the reservation at the beginning of the next transaction, aborting if the location

has changed since the previous transaction committed. The composition of these linked

transactions appears atomic because no updates are done until the final transaction.

One problem with reservations as described thus far: What happens if a reserved location

is reclaimed? In that case, even reading the location in the next transaction may not be

safe (e.g., it may result in a segmentation fault). We can avoid this problem by treating a

reservation as a kind of hazard pointer [83], deferring the reclamation of reserved locations.

Such deferral is not a significant concern for garbage-collected languages. However, in

languages like C and C++, custom allocators are required, which must delay reclamation

of some locations until all possible concurrent reads complete. It is difficult to bound the

time between logical removal and physical reclamation [34], and many scalable techniques

accept unbounded worst-case delay for a bounded [83] or unbounded [26] number of items.

To avoid these delays, a system might fall back to complex or expensive measures when the

amount of unreclaimed memory becomes too great [5,10,12,19]. However, there will always

remain programs whose correctness depends on memory being reclaimed immediately, hence

the need for precise memory reclamation.

To avoid this problem, we introduce revocable reservations, which allow threads to revoke
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Head 10 20 30 res(&30) get()->30 40 50 60
rel(&30)
res(&60)

get()->60 70 80 rel(&60)

Head 10 20 30 res(&30) get()->30 40 50 60

Head 10 20 30 res(&30)

ABORT

Restart 
from head

Head 10 20 30 rev(&30)40

get()->{}

free(&30)

Thread 1: Lookup 80

Thread 2: Lookup 70

Thread 3: Lookup 90

Thread 4: Remove 30

Figure 2.1: Concurrent operations on a linked list, with hand-over-hand transactions and
revocable reservations. Time advances to the right. Dashed boxes indicate transactions,
and filled black rectangles represent operations on the revocable reservation shared object
(“res”, “get”, “rel”, and “rev” correspond to reserving a value, getting a previously reserved
value, releasing a reservation, and revoking all reservations for a specific value).

all reservations to a specified location. A subsequent transaction that checks a reservation

will see that it has been revoked and therefore not attempt to access the formerly reserved

location. By leveraging features of HTM, particularly the immediacy of aborts, concurrent

operations are able to revoke these reservations and immediately reclaim memory, without

compromising correctness.

To see how hand-over-hand transactions work with revocable reservations, consider the

execution shown in Figure 2.1, in which four threads perform operations on a linked-list

based set using hand-over-hand transactions. Threads T1, T2 and T3 invoke Lookup with

values 80, 70 and 90 respectively. Each of these threads executes an initial transaction

that traverses the first four nodes in the list (including the head), and then commits that

transaction, reserving the node N with value 30. Then T1 and T2 start new transactions

to continue traversing the list starting from the reserved node N , and T1 commits its

transaction, releasing N and reserving a new node (with value 60). Concurrently, thread

T4 invokes Remove(30), finding the relevant node (N) with its first transaction. Because

it wants to remove and free N , it calls Revoke(N) before committing, which revokes the

reservations of T2 and T3. (By this time, T1 has already released N and reserved a different

node, so it is not affected and can complete its operation.) This revocation conflicts with

T2’s use of its reservation at the beginning of its second transaction, so this transaction must

be aborted. T3 begins its second traversal transaction after T4 commits, so when T3 checks
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its reservation, it finds that its reservation has been revoked, and so retries its operation

from the beginning (i.e., begins traversing from the head). Note that had T4 removed 20 or

40 rather than 30, for example, the reservations of T2 and T3 would not have been revoked,

so they could have continued with their operations unaffected.

We present several approaches to implementing revocable reservations, which differ in

both asymptotic overhead and likelihood of conflict. We implemented and evaluated these

variants in the context of singly and doubly linked lists, and unbalanced binary search trees.

We found performance to be competitive with the state of the art in both transactional and

nonblocking data structures, without sacrificing immediate memory reclamation.

2.2 Specification

A revocable reservation is a shared object that provides four methods, Reserve, Get, Release,

and Revoke. Each of these operations takes a “reference” as a parameter. The object

maintains a set of references for each thread. A thread adds and removes references from

its set using Reserve and Release respectively. Revoke removes a reference from every

thread’s set. Get checks whether a reference is in the caller’s set, returning nil if it is not.

These methods must be called from within transactions, so they always appear atomic,

and we can define their behavior precisely with a sequential specification, which appears in

Algorithm 4.

Algorithm 4: Sequential specification for the revocable reservation shared object
T = set of all threads
R = set of all references

states

refs : T → Set(R); initially refs(t) = {} for all t ∈ T
procedure Reserve(r : R) for thread t

requires r /∈ refs(t)
refs(t)← refs(t)

⋃
r

procedure Release(r : R) for thread t

requires r ∈ refs(t)
refs(t)← refs(t) \ r

function Get(r : R) for thread t

return

{
r if r ∈ refs(t),

nil if r /∈ refs(t).

procedure Revoke(r : R) for thread t

∀t′∈T : refs(t′)← refs(t′) \ r
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Note that conflicts among operations on a revocable reservation always involve opera-

tions with same reference, one of which must be a call to Revoke. In particular, concurrent

calls to Reserve, Get, and Release never conflict with each other.

The revocable reservation implementations we describe in the next section also provide

a Register method, which is invoked by a thread before it invokes any other operation on

the revocable reservation. Although not formally part of the specification, this operation is

useful for maintaining the set of threads that may use the object, and thus for whom a set

of references must be maintained.

2.3 Implementations

In this section, we present two families of revocable reservation implementations. The first

adheres strictly to the specification in Section 2.2. The second provides a relaxed guarantee,

inspired by STM: a Get may return nil even when the previously reserved reference was

not revoked. To simplify the presentation, the algorithms in this section only support one

reservation per thread. Extending the algorithms to support per-thread sets of reserved

references is straightforward.

2.3.1 System Model

We assume a shared memory multiprocessor with coherent caches, and a TM implementa-

tion that provides a total order on transactions. The consequence of these requirements is

that all writes to any single location must be ordered, and all operations performed within

a transaction must appear to execute without any interleaving of transactional operations

by other threads. We do not require Strong Isolation [2, 9, 106], and thus both HTM and

opaque [49] STM are compatible with our algorithms. When STM is used, it must sup-

port privatization safety [81]. This is not a requirement of our algorithms, but rather a

consequence of the desire for memory to be immediately reclaimed.
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Algorithm 5: Basic revocable reservation algorithm (RR-FA): a linked list sim-
ulates a fully associative cache of reservations. All functions are called from an
active transaction.

Variables (“t” subscript indicates per-thread):
LL : List〈Node〈R〉〉
Nt : Node〈R〉

function Register()

1 if Nt = nil then
2 Nt ← new Node(nil)
3 LL.appendNode(Nt)

function Reserve(r : R)
4 Nt.value← r

function Release()

5 Nt.value← nil

function Get()

6 return Nt.value

function Revoke(r : R)
7 for n ∈ LL do
8 if n.value = r then
9 n.value← nil

2.3.2 Strict Implementations

Our first three implementations of revocable reservations resemble fully associative, direct-

mapped, and set-associative caches. These implementations strictly adhere to the specifi-

cation in Section 2.2. There is significant overlap among the three implementations; to save

space, we only present pseudocode for the first in Algorithm 5.

Fully Associative Reservations RR-FA resembles a fully associative cache: through

the Register method, threads “own” nodes in a linked list, and each thread t leaves its node

Nt in the list from the time it first performs an operation on an RR-FA-protected list until

the point where t terminates. To reserve reference r, t stores r in Nt; to release, t stores

nil in Nt. To get its reservation, t reads from Nt. To revoke reservations on reference r, a

thread traverses the list, and whenever it finds that a node stores r, it writes nil to that

node.

To support multiple reservations per thread, we would replace the value field with a

set. Then Reserve would append to the set, Release would remove an element from the set,

and Get would test the set for membership. Revoke would remove from each thread’s set,

potentially increasing asymptotic complexity. All methods of the revocable reservation are
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performed within a transaction, which simplifies coordination of threads’ accesses to these

sets.

The complexity of Revoke is linear in the thread count. Revoke is also prone to low-

level conflicts: From the time a revoking thread t accesses some node Ni until t’s revoking

transaction commits, any release or reserve by ti will cause t’s transaction to abort. On the

other hand, Reserve, Release, and Get have O(1) complexity with low constant overhead.

As long as each thread’s node is in a separate cache line, these methods should not experience

false transaction conflicts.

Direct Mapped Reservations RR-DM (direct mapped) replaces LL with an array of

unsorted, doubly linked lists, and uses a hash function to assign references to these lists.

Each thread is still assigned a single node, which can be present in at most one list at any

time. To revoke reservations on a reference r, a thread traverses through the list in the

array position to which that reference hashes, and in any node where it observes r, it writes

nil. To reserve a node, a thread sets the value in its node, and then inserts its node into the

appropriate list. To release a reservation, the thread must set its node’s value to nil, and

should remove its node from the list. As a contention-avoiding optimization, in RR-DM, a

thread can delay removing the node from its list until a subsequent transaction. The Get

method is unchanged from RR-FA.

RR-DM reduces the common-case overhead of Revoke, but the worst case is unchanged.

The asymptotic complexity of Reserve and Release is unchanged, but the constants are

higher: each now inserts or removes from a doubly linked list. More significantly, simul-

taneous calls to Reserve and Release from different threads can now result in transaction

conflicts on one of the reservation object’s lists. To reduce contention, each list begins with

a sentinel node.

Set Associative Reservations RR-SA (set associative) replaces the single array of dou-

bly linked lists in RR-DM with A arrays. Each thread is assigned to an array via a mapping

function. In Reserve and Release, the calling thread chooses the appropriate array, and then

operates as in RR-DM. Get is unchanged from RR-DM and RR-FA. However, Revoke must
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now traverse a list in each of the A arrays, resulting in O(A + T ) complexity, where T is

the number of threads.

RR-SA does not change the complexity of Reserve or Release, nor does it reduce the

constants in these methods relative to RR-DM. However, it does reduce the likelihood that

concurrent invocations of Reserve and Release will result in transaction conflicts, since these

methods are unlikely to access the same lists. The cost of this improvement is additional

overhead in Revoke, which now must traverse A lists (though the total number of entries

in those lists cannot exceed the number of threads).

Correctness In the absence of concurrent calls to Revoke, the correctness of the cache-

inspired implementations is straightforward: a thread writes a reference into a thread-

specific location to reserve it, reads from that location to get it, and clears that location to

release it. Thus the overall correctness of the algorithm reduces to ensuring that revoking r

prevents subsequent calls to Get from returning r. In each algorithm, revocation traverses

every possible location where a node might store r, and whenever that value is found, it is

replaced with nil. Since every method is called from a transaction, there are no concurrent

interleavings to complicate the argument.

2.3.3 Relaxed Implementations

In our relaxed implementations, after ti reserves reference ri, its subsequent calls to Get

may return nil on account of another thread calling Revoke(rj) or Reserve(rj), for rj 6= ri.

In exchange for this relaxation, these algorithms have smaller constant and asymptotic

overhead, and less likelihood of transaction contention.

Exclusive Ownership RR-XO is inspired by the idea of ownership in STM, and is pre-

sented in Algorithm 6. Again, all functions are called from a transactional context, but now

a hash function provides a many-to-one mapping from memory locations to positions in

an array (OWN) of thread identifiers. Every thread is assigned a unique identifier through

Register, starting with the value 0. The value −1 has special meaning. To reserve a refer-

ence r, a thread writes r to its thread-local variable Rt, and writes its unique identifier IDt
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Algorithm 6: Exclusive Owner Revocable Reservation algorithm (RR-XO): an
array of thread IDs is used to indicate which thread currently holds a reservation
for all references that hash to any given array entry.

Variables (“t” subscript indicates per-thread):
OWN : N[]
ID : N // initially 0
IDt : N // initially -1
Rt : R // initially nil

function Register()

1 if IDt = −1 then
2 IDt ← ID
3 ID← ID + 1

function Reserve(r : R)
4 Rt ← r
5 OWN[hash(r)]← IDt

function Release()

6 Rt ← nil

function Get()

7 if OWN[hash(Rt)] = IDt then
8 return Rt

9 else
10 return nil

function Revoke(r : R)
11 OWN[hash(r)]← −1

into the array at the position determined by hash(p). Release is a local operation, which

sets Rt to nil but does not update the shared array of identifiers. To revoke reference r, a

thread writes −1 in the shared array in the position determined by hash(p). To perform a

Get of reference r, thread t must check that IDt is still in the table at the expected position.

If so, the value in Rt is returned; otherwise nil is returned. To support multiple reservations

per thread, Rt can be replaced with a set. Since Rt is only accessed by thread t, this does

not introduce new concurrency challenges.

In RR-XO, all methods run in constant time. Release only accesses thread-local data,

and can never cause transactions to conflict. Unlike the strict algorithms, Reserve must

write to shared memory, and two threads cannot reserve the same reference simultaneously.

Get retains its constant-time complexity, but it must read from shared memory to determine

if Rt remains valid. In exchange for these increases in overhead, Revoke reduces to a single

constant-time write.

Shared Ownership RR-SO extends RR-XO similarly to how RR-SA extends RR-DM: it

introduces multiple arrays of thread identifiers. Each thread is assigned to a specific array,
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Algorithm 7: Version-based Revocable Reservation algorithm (RR-V): an array
of integers is used to coordinate revocation and reservation operations.

Variables (“t” subscript indicates per-thread):
V : N[]
ID : N // initially 0
IDt : N // initially -1
Rt : R // initially nil
Vt : N

function Register()

1 if IDt = −1 then
2 IDt ← ID
3 ID← ID + 1

function Reserve(r : R)
4 Rt ← r
5 Vt ← V [hash(r)]

function Release()

6 Rt ← nil

function Get()

7 if V [hash(Rt)] = Vt then
8 return Rt

9 else
10 return nil

function Revoke(r : R)
11 V [hash(r)]← V [hash(r)] + 1

and operates identically to RR-XO for the Get, Reserve, and Release methods. To revoke, a

thread must write −1 to the appropriate position in each of the arrays of thread identifiers.

We refer to this “shared (read) ownership” variant as RR-SO.

With A ownership arrays, RR-SO increases the complexity of Revoke to O(A). It does

not change the complexity of the other operations. The main benefit is that threads will

rarely cause transaction conflicts when they reserve the same reference, since they are likely

to be assigned to different ownership arrays.

Versioned Reservations RR-V (Algorithm 7) uses versioning to share reservations with-

out increasing the overhead of Revoke. The OWN array is replaced with a version array

(V ), which stores counters. These counters function like ownership records [28] in STM.

To reserve reference r, t writes r to a thread-local field Rt, and then records the counter

associated with that reference in thread-local Vt. The Get method checks that the value in

the counter array is still Vt. To release, the thread writes nil to Rt, and to revoke reference

r, the counter associated with r is incremented.

In RR-V, all operations have constant overhead. Reserve no longer writes to shared
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memory, and thus should not cause transaction conflicts. The use of version numbers allows

any number of threads to simultaneously reserve the same reference, unlike the limits of 1

and A in RR-XO and RR-SO, respectively. Revoke is still O(1), but must read and write

to shared memory, instead of writing a constant.

Correctness Due to the use of hash functions, a revoke of r1 could invalidate a reservation

of r2 if r1 and r2 hash to the same position in OWN or V . Still, we can reason about

correctness in the absence of hash conflicts. In the absence of concurrency, the correctness of

the three implementations follows immediately from the implementation. As in the previous

subsection, the correctness of a call to Get in the face of a concurrent call to Revoke requires

discussion. Calls to Revoke do not overwrite t’s reference in Rt. However, since every call

to Get that returns reference r accesses the metadata (in OWN or V ) associated with r,

and revoking r writes that metadata, the TM implementation will ensure that a conflict

manifests, and a revoked r will not be used. Furthermore, RR-XO and RR-SO limit the

ability of threads to concurrently hold a reservation on a reference. This limitation affects

progress, but not correctness: if ti has reserves reference r, and then thread tj also reserves

r, such that IDi is no longer in OWN, ti will mistake tj ’s call to Reserve for a call to Revoke,

but will not return an incorrect value.

2.4 Using Revocable Reservations

In this section, we briefly sketch three concurrent data structures that use revocable reser-

vations: a singly linked list, a doubly linked list, and an unbalanced binary search tree.

2.4.1 Singly Linked List

Algorithm 8 presents a concurrent singly linked list implementation that uses revocable

reservations. The behavior of this code corresponds to the illustration in Figure 2.1. We

represent the common functionality of the Insert, Lookup, and Remove functions as the

Apply function (lines 1–18). Apply takes a search key and two functions, which are run

when the key is found, or is not found, respectively. Lines 19–39 provide implementations
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Algorithm 8: Singly linked list with revocable reservations. Nodes consist of a
value and a next pointer, and the head initially points to a sentinel node.

Variables:
RR : RevocableReservation
head : Node〈T 〉 // Head of the list
W : N // Nodes to visit per transaction

function Apply(key : T, λfound, λnotfound)
1 while true do
2 transaction

// Initialize
3 (prev, i)← (RR.Get(), 0)
4 if prev = nil then
5 (prev, i)← (head, scatter(W ))

// Traverse
6 curr← prev.next
7 while curr 6= nil ∧ curr.val < key ∧ i < W do
8 (prev, curr, i)← (curr, curr.next, i+ 1)

// Match
9 if curr 6= nil ∧ curr.val = key then

10 res← λfound(prev, curr)
11 RR.Release()
12 return res

// No Match
13 if curr = nil ∨ curr.val > key then
14 res← λnotfound(prev, curr)
15 RR.Release()
16 return res

// Next Window
17 RR.Release()
18 RR.Reserve(curr)

function Lookup(key : T)
19 λfound ← function (prev : Node, curr : Node)
20 return true

21 λnotfound ← function (prev : Node, curr : Node)
22 return false

23 return Apply(key, λfound, λnotfound)

function Insert(key : T)
24 λfound ← function (prev : Node, curr : Node)
25 return false

26 λnotfound ← function (prev : Node, curr : Node)
27 n← new Node(key)
28 n.next← curr
29 prev.next← n
30 return true

31 return Apply(key, λfound, λnotfound)

function Remove(key : T)
32 λfound ← function (prev : Node, curr : Node)
33 prev.next← curr.next
34 RR.Revoke(curr)
35 delete(curr)
36 return true

37 λnotfound ← function (prev : Node, curr : Node)
38 return false

39 return Apply(key, λfound, λnotfound)

of the two functions suitable for Lookup, Insert, and Remove operations.
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Initially, the thread does not have a reservation, and the Get on line 3 returns nil. In

this case, the thread will start from the head of the list, and will begin traversing forward.

Typically, a thread will access a maximum of W nodes per iteration of the while loop. To

reduce contention on revocable reservation metadata, it may be desirable to have threads

shorten their initial traversal; this is achieved by the scatter function, which ensures that

each thread’s first traversal in Apply will be of some number between 1 and W nodes

(subsequent transactions will traverse up to W nodes). During traversal, the counter i

tracks the remaining nodes before a transaction must commit and start a new window.

This provides the hand-over-hand behavior we desire, ensuring that traversals that progress

far into the list do not conflict with modifications to nodes at the beginning of the list.

When there are no concurrent Remove operations, a thread will reserve its current

position on line 18, commit its transaction, and then immediately get that position on line 3.

If a concurrent Remove invalidates the traversing thread’s start position (via Revoke), then

the traversal either (a) aborts, and then discovers that its reservation is now nil, or (b) is

between transactions, and will discover that its reservation has become nil. In either case,

the thread will restart its search from the head of the list (line 5).

2.4.2 Doubly Linked List

Due to space constraints, we do not present full pseudocode for the doubly linked list

algorithm; it is not significantly different from the singly linked list. We add a “previous”

pointer to each node in the list, and during insertions and removals, we must set both the

next and previous pointers; since updates are performed transactionally, the code to achieve

this behavior is identical to a sequential doubly linked list. The only substantiative change

relates to the removal code. In the singly linked list, the previous and current nodes are

needed when unlinking a node, but in the doubly linked list, the current node suffices: its

predecessor and successor are both reachable from it. This affords an optimization: rather

than perform the unlinking and revoking operations from within Apply, a Remove that finds

a node with matching key can reserve the node, commit the transaction, and then use a new

transaction to perform both the unlinking step and the Revoke. If this transaction discovers

that its reservation has been invalided, then it must mean that a concurrent transaction
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removed the same node, in which case the operation can return false: it can appear to

happen immediately after the concurrent Remove operation.

The appeal of this optimization is that it avoids costly calls to Revoke from within

traversing transactions. However, in our relaxed implementations, it is not correct: If Get

returns nil, it may mean that an unrelated Revoke (RR-V) or even a concurrent Reserve

(RR-XO and RR-SO) has incorrectly invalided the reservation. For these algorithms, if the

final call to Get in a Remove operation returns nil, we must retry the entire operation.

2.4.3 Unbalanced Binary Search Tree

Lastly, we discuss an unbalanced binary search tree that uses revocable reservations. The

basic pattern for the tree appears in Algorithm 9. We focus on an internal tree, and again

with the list, we employ a sentinel node at the root, to simplify the case where the first

element reached in a traversal is the target of a removal operation. Our implementation

does not save parent pointers in tree nodes, but each node does store whether it is the left

or right child of its parent.

Since the tree is not balanced, the Lookup and Insert operations are nearly identical

to corresponding singly linked list code: a Lookup traverses until it finds its target node,

and an Insert traverses until it either finds the value it is trying to insert, or it reaches

a nil node, at which point it adds its value. Neither of these operations needs to revoke

reservations, and both need only one reservation during their hand-over-hand traversals.

The complexity of the algorithm is in the Remove operation. If the value to be removed

is in a leaf node, or if it is in a node that only has one child, then it can be removed in

the same manner as in a singly linked list (lines 44–49). With regard to the reservation

mechanism, these code paths need only revoke reservations on one node: the node to be

removed. Revoking the node to remove is necessary, since another thread’s search may have

reserved the node that is being deleted. However, we need not revoke the node’s parent or

its child (if any): If a concurrent Apply reserved the parent, then the removal of the node

cannot invalidate the Apply’s most recent traversal, and the removal will be detected when

the operation starts its next transaction. Similarly, if the concurrent Apply reserved the

child, then it must not be searching for the removed value, and the removal cannot have
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Algorithm 9: Unbalanced binary search tree with revocable reservations. Nodes
consist of a value, two child pointers, and a flag indicating whether they are the
left or right child of their parent. The root is a sentinel node with only a left child.

Variables:
RR : RevocableReservation // Shared RR object
root : Node〈T 〉 // Root of the tree
W : N // Nodes to visit per transaction

function Apply(key : T, λfound, λnotfound)
1 while true do
2 transaction

// Initialize
3 (prev, i)← (RR.Get(), 0)
4 if prev = nil then
5 (prev, i)← (root, scatter(W ))

// Traverse
6 if prev.val > key then curr← prev.left
7 else curr← prev.right
8 while curr 6= nil ∧ curr.val 6= key ∧ i < W

do
9 (prev, i)← (curr, i+ 1)

10 if curr.val > key then curr← curr.left
11 else curr← curr.right

// No Match
12 if curr = nil then
13 res← λnotfound(prev, curr)
14 RR.Release()
15 return res

// Match
16 if curr.val = key then
17 res← λfound(prev, curr)
18 RR.Release()
19 return res

// Next Window
20 RR.Release()
21 RR.Reserve(curr)

function Lookup(key : T)
22 λfound ← function (prev : Node, curr : Node)
23 return true

24 λnotfound ← function (prev : Node, curr : Node)
25 return false

26 return Apply(key, λfound, λnotfound)

function Insert(key : T)
27 λfound ← function (prev : Node, curr : Node)
28 return false

29 λnotfound ← function (prev : Node, curr : Node)
30 n← new Node(key)
31 if prev.val > key then prev.left← n
32 else prev.right← n
33 return true

34 return Apply(key, λfound, λnotfound)

function Remove(key : T)
35 λfound ← function (prev : Node, curr : Node)

// node to delete has two children
36 if curr.left 6= nil ∧ curr.right 6= nil then

// right child’s leftmost descendent, parent
37 (leftmost, parent)← getSwapTarget(curr)

// get all nodes on path to leftmost
38 nodes← {curr . . . leftmost}

// swap value and fix leftmost’s
descendents

39 curr.val← leftmost.val
40 parent.left← leftmost.right

// Invalidate reservations before deleting
41 RR.Revoke(nodes)
42 delete(leftmost)
43 return true

// node to delete has < 2 children
44 if curr.left = nil then child← curr.right
45 else child← curr.left
46 if curr.val < prev.val then prev.left← child
47 else prev.right← child
48 RR.Revoke(curr)
49 delete(curr)
50 return true

51 λnotfound ← function (prev : Node, curr : Node)
52 return false

53 return Apply(key, λfound, λnotfound)

affected the success of the next transaction issued by the operation, because the subtree

rooted at the child has not changed.

When the value to be removed is in a node with two children, we must find a node to

swap into its place. We choose the leftmost descendant of the node’s right child for the

swap. If that node is a leaf, it is removed from the tree by writing nil to its parent’s left

child. Otherwise, it is removed from the tree by promoting its right child to its parent’s left
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child. We encapsulate this search as the getSwapTarget function on line 37. It returns the

swap target and the swap target’s parent. If the swap target is not a leaf, after swapping

we must promote its child up one level (lines 39–40). If the swap target is a leaf, those lines

write a nil to parent’s left child.

When we remove a value stored in a node with two children, we do not extract the

node holding the value from the tree. Instead, we overwrite its value and then extract the

leftmost descendant node of the right child from the tree. Clearly, the node that is extracted

must be revoked. However, the fact that its value moves upward in the tree means that

concurrent operations that have performed a Reserve anywhere on the path from curr to

leftmost may be invalid. Let v be the value to delete, and l be the value of the leftmost

descendant of the right child. l will be written into v’s node using a transaction, so there is

never a time where it could appear that l is not in the tree. However, suppose a concurrent

thread tC is performing an operation with a value of l. If tC has traversed to a point between

the node holding v and the node holding l, and has reserved that node, then when it begins

its next transaction(line 3), it will continue searching from a point below the point where l

has been moved, and thus it will incorrectly return that l is not in the tree.

A sufficient condition to remedy this situation is for the thread removing v to perform

a Revoke on every node in the path from v to l. The revocation causes concurrent threads

on that path to restart their traversal from the root of the tree, thereby ensuring that they

do not resume from a point that has become invalid.

2.5 Evaluation

To evaluate the performance of revocable reservations, we conducted a series of stress-test

microbenchmarks. Our evaluation platform is a 4-core/8-thread Intel Core i7-4770 CPU

running at 3.40GHz. This CPU supports Intel’s TSX extensions for HTM [60]. It has 8 GB

of RAM and runs a Linux 4.3 kernel. We used the TM support in the GCC 5.3.1 compiler.

Results are the average of 5 trials. Across all experiments, variance was below 3%.

We evaluate four data structures: singly and doubly linked lists and internal and external

unbalanced binary search trees. We consider the six revocable reservation implementations,
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and an implementation in which every data structure operation is performed within a single

hardware transaction. GCC’s language-level support for HTM falls back to a serial mode

after hardware transactions fail twice. For the lists, this policy is adequate, but for the

trees, we changed the number to 8, as it improved the performance of all implementations.

For large transactions, the GCC TM implementation often must serialize these operations,

and it does so after two failed attempts. In our implementations, each hand-over-hand

transaction also uses GCC TM.

In the singly linked list experiments, we compare against a lock-free list based on the

work of Harris [50] and Michael [82]. We provide two versions of the list: one that never

reclaims memory, and one that uses hazard pointers [83]. The former approximates the

best-case performance of an epoch-based allocator or garbage collector, but has no bounds

on memory overheads. The latter is significantly more expensive, but can bound memory

consumption more tightly. Our implementations adhere to the C++11 standard. With

hazard pointers, performance is best when threads only reclaim after 64 deletions, so we

report that result.

Our list experiments also include a transactional hazard pointer implementation. Al-

gorithmically, operations are identical to those in Algorithm 8, except that memory recla-

mation is deferred via hazard pointers, instead of being performed immediately. We also

provide a reference-counted version of this implementation. These algorithms most closely

resemble work by Liu et al. [75], and benefit from only accessing hazard pointers once per

internal transaction.

We consider both internal and external trees. This affords an opportunity to compare

against an existing lock-free unbalanced search tree [88], taken from SynchroBench [47].

Note that this algorithm leaks memory.

We discovered two sources of sensitivity when running the experiments. First, there

is a relationship between the number of threads and the optimal transaction window size

(variable W in Algorithm 8). We determined the best window size for each thread count

and data structure, and used these values. Second, the choice of memory allocator had a

significant impact on scalability. This is a known issue with TM [4]. We performed each

experiment with three allocators: the Linux system allocator, Hoard [7] and jemalloc [38].
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Figure 2.2: Singly linked list microbenchmark

In our charts, we report performance for whatever allocator was most stable: Hoard for the

lists, jemalloc for the trees. We also observed significant improvements for all implementa-

tions when memory allocation and reclamation was performed outside of transactions. This

suggests TM-aware allocators as a future research topic.

2.5.1 Linked Lists

Figure 2.2 presents a singly linked list benchmark. In each experiment, we pre-populate the

list to a 50% filled state, and then perform 1M operations per thread. We vary the key range

(6-bit or 10-bit) and operation mix (0, 33, or 80% lookups, with the remaining operations

split evenly among inserts and removes). In the 6-bit experiments, we omit results for the

lock-free implementations: hazard pointers (LFHP) perform the worst, and the lock-free

list without any memory reclamation (LFLeak) performs best, but neither scales.

With small key ranges, transactions cannot scale: any list modification operation is

likely to access a location that has recently been read by a concurrent transaction. However,

hand-over-hand transactions exceed the baseline single-transaction implementation (HTM)

in most cases, especially when lookups do not dominate. The experiments also show that

when transactions are small, the cost of Revoke is important: the implementations with
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O(1) Revoke (RR-XO, RR-SO, and RR-V) perform significantly better than those with

O(T ) overhead (RR-FA, RR-DM, RR-SA).

Even with scatter optimizations, transactional reference counting (REF) performs

poorly. This is despite optimizations that put reference counts in separate cache lines,

read only for the first and last node of each transaction. Additionally, for small lists we

can quantify the cost of precise reclamation by contrasting performance with transactional

hazard pointers (TMHP). By deferring reclamation and performing reclamation in batches,

reclamation exhibits more locality with allocator metadata, and hence has lower latency.

Furthermore, since TMHP does not write to shared reservation metadata, it scales better

for small key ranges.

With 10-bit key ranges, the bottlenecks in many of our reservation-based algorithms

decrease. Revoke represents a smaller fraction of total execution time, and the overall

performance of each reservation implementation becomes a function of the propensity for

Reserve and Release to cause conflicts: RR-DM performs worst, since threads must insert

and remove their nodes from doubly linked lists, and RR-SA performance varies between

RR-DM and RR-FA, depending on the value of A (in the charts, A = 8).

For high lookup ratios, the relaxed implementations perform best. They avoid the per-

access overheads of the leaky list, and their costs relative to transactional hazard pointers are

amortized over a longer transaction execution. Interestingly, this workload experiences the

longest reclamation delays for the hazard pointer and epoch-based reclamation strategies.

Revocable reservations eliminate all reclamation delay while delivering good performance.

Figure 2.3 presents results for the doubly linked list. We no longer report reference

counting, since it performs poorly, and we do not report lock-free doubly linked list perfor-

mance: the only known algorithms make use of simulated multi-word compare-and-swap,

and perform significantly worse than the lock-free singly linked list. The main difference

between the two list algorithms is that Remove operations can unlink in a separate transac-

tion from the one that finds the target node. This is beneficial for scaling, since the writing

transaction is smaller. It also reduces conflicts in the reservation mechanism: if a call to

Revoke aborts due to conflicts with a concurrent Reserve, the enclosing transaction retries

immediately, without performing a traversal.
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Figure 2.3: Doubly linked list microbenchmark

Overall, the doubly linked list trends are similar to the singly linked list. We observe a

slightly smaller gap between the reservation mechanisms and TMHP, suggesting that the

separate unlink-and-revoke transaction reduces conflicts and contention within the reserva-

tion mechanism. The remaining differences stem from TMHP’s ability to batch its deferred

reclamation.

2.5.2 Window Size

Figure 2.4 shows the impact of window size on our algorithms. We highlight RR-FA and

RR-XO, which are representative of the strict and relaxed techniques. The experiments

use 10-bit keys and a 33% lookup ratio. On the one hand, smaller windows are less likely

to result in transactional conflicts. On the other, smaller windows increase latency, since

there are overheads at each transaction boundary. In addition, for RR-XO, scattering the

initial window size is an important optimization, since threads will otherwise conflict when

reserving nodes.

At one thread, there are no conflicts, and all transactions fit within the hardware ca-

pacity, even with a window size of 32. The advantage of a large window diminishes rapidly,

especially in RR-FA, where revocation is more likely to cause false conflicts with calls to
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Figure 2.4: Impact of window size

Reserve and Release. Since the likelihood of conflicts increases with the thread count,

higher counts favor smaller windows. In addition, at 8 threads, each hardware transaction’s

capacity is effectively halved, since our CPU has four two-way threaded cores. Up to 4

threads, a window size of 16 is best. At 8 threads, the balance tips in favor of a window

size of 8.

This experiment suggests future work in dynamic tuning of the window size. Doing so

will entail hand-crafting the transactions, instead of using GCC TM support: GCC TM does

not expose the fact of an abort, or its cause, to the programmer. Without that information,

it is not possible to implement a data structure-specific tuning mechanism.

2.5.3 The Impact of Allocator Algorithm

To illustrate the impact of the memory allocator on performance, Figure 5.1 contrasts the

performance of transactional hazard pointers (TMHP) with the RR-XO algorithm for a

doubly linked list. We conduct two experiments, with 0% and 98% lookup ratios, on a list

holding 9-bit keys. Curves prefixed with “J-” use jemalloc, and curves prefixed with “H-”

use Hoard.

This case is the most extreme that we observed in all of our experiments: TMHP exposes

a pathological behavior in jemalloc, resulting in poor scalability. This is especially peculiar

at the 98% lookup ratio, where memory allocation and deallocation are rare. The impact

of the allocator was roughly the same for our six implementations of revocable reservations

on the doubly linked list.
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Figure 2.5: Impact of allocator

2.5.4 Unbalanced Search Trees

We now turn our attention to binary search trees. When a tree has logarithmic depth,

performing operations within a single transaction should deliver good performance: even

with 2M entries in the tree, the average traversal should only touch about 22 nodes, and

should fit in the hardware cache. Thus the potential for reservations to improve performance

is diminished. However, since the trees are not balanced, occasional large traversals are

possible. Without hand-over-hand transactions, these traversals are likely to exceed cache

size, and cause program-wide serialization of transactions.

Figure 2.6 presents an internal tree microbenchmark, which has mixed (0, 50, or 80%)

lookups. We now consider 8-bit and 21-bit keys. In each experiment, the data structure

is pre-populated with random keys to reach a 50% fill rate. We are not aware of internal

trees that use hazard pointers, and the lock-free tree in SynchroBench is an external tree,

so we can only compare our six algorithms against an algorithm where each data structure

operation is a single transaction (HTM).

In the small (8-bit) key range experiment, our best implementations use a large window

at low thread counts, and the entire operation fits in a single transaction. Thus differences

relative to the HTM curve at one thread indicate the cost of reservations, and differences

at higher thread counts reveal bottlenecks or contention due to the reservation mechanism.

As in the list curves, we see that the relaxed implementations RR-XO and RR-V offer the

best performance: all overheads are constant, and threads are unlikely to reserve the same
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Figure 2.6: Internal binary search tree microbenchmark

nodes.

For the large key range experiment, there is an inflection point after 4 threads, due to

hardware multithreading. The HTM algorithm exceeds the cache, and serializes. In con-

trast, reservation-based algorithms can use a smaller window size and complete. However,

only RR-XO and RR-V scale well. The cause of poor performance in the other algorithms

is the overhead of calling Revoke for multiple references. Recall that in the tree, a removal

must revoke reservations on the path between the found node and the node whose value

will be swapped. In RR-SA and RR-SO, each call to Revoke visits A locations (A = 8). In

RR-DM, k Revoke operations result in O(k) unique accesses.

Lastly, Figure 2.7 presents the performance of an external binary search tree that uses

revocable reservations. We also include results for a nonblocking external tree [88] that leaks

memory (LFLeak), and a tree that uses hand-over-hand transactions and hazard pointers

(TMHP).

With no memory reclamation overheads, no overheads on transaction boundaries, and

a highly optimized lock-free implementation, LFLeak performs significantly better at all

thread levels, and scales linearly. The difference between LFLeak and the other algorithms

makes it difficult to observe their performance, so we omitted the weaker-performing reser-
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Figure 2.7: External binary search tree microbenchmark

vation algorithms. The best reservation algorithms, RR-XO and RR-V, exhibit the same

relationship to HTM as in the internal tree experiments. In addition, we see that the

performance of TMHP is almost indistinguishable from these algorithms. In the absence

of multiple calls to Revoke, the other reservation algorithms performed better than in the

internal tree, though still below RR-XO and RR-V.

2.6 Conclusions

This chapter introduced revocable reservations, which allow concurrent data structure de-

signers to make use of hand-over-hand transactions and still immediately reclaim memory.

We presented six implementations of revocable reservations, three of which allow for spu-

rious revocation of reserved references. We also presented concurrent list and tree data

structures that employ revocable reservations and hand-over-hand transactions. We found

that the relaxed algorithms performed best, often enabling hand-over-hand transactions to
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provide better scalability and resilience than coarse-grained transactions, with minimal cost

relative to hazard pointer implementations that sacrifice immediate reclamation.

Overall, we found the use of revocable reservations to be straightforward, and their ap-

plication to lists and unbalanced trees did not require much data structure redesign. Based

on this experience, we believe they will be a valuable technique for other concurrent data

structures, such as balanced trees and hash tables, for which existing scalable algorithms

rely on deferred memory reclamation.
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Chapter 3

Supporting Complex Patterns of

Synchronization

In this chapter, we describe our experiences employing Transactional Lock Elision (TLE)

in two real-world applications: the PBZip2 file compression tool, and the x265 video en-

coder/decoder. The original work was published in “Practical Experience with Transac-

tional Lock Elision” at the 46th International Conference on Parallel Processing [129].

3.1 Introduction

In this chapter, we focus on TLE. TLE plays an important role in the long-term adoption

of TM: until it is shown to be useful, there is little incentive for HTM and STM implemen-

tations to provide support for the advanced features needed by transactional programming

models, such as self-abort [51, 91], deferred actions [127], OS support for transactional

system calls [115], escape actions and open nesting [53, 90, 131], and nuanced contention

management [103].

The primary vehicles for our study are two open-source applications: the PBZip2 parallel

file compression/decompression toolkit [44], and the x265 media encoder/decoder [93]. Both

programs are large, robust, and mature, with many locks, non-trivial input and output

operations, and subtle protocols for sharing memory. Neither was designed with TM in

mind, and both have been heavily optimized. In both cases, we explore whether it is possible
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for TLE to improve program performance. Our TLE versions of these benchmarks were

produced via a hand instrumentation that applied the C++ TMTS [61]. In this manner,

we believe our findings have the most potential to generalize, both to other TLE endeavors,

and to efforts to improve the TMTS. Since they conform to the TMTS, it is also relatively

easy to test these benchmarks with a variety of HTM and STM implementations.

While there are many small discoveries reported in this chapter, two experiences stand

out. In the case of PBZip2, we found that both HTM and STM were able to improve

performance relative to locks, but STM could only do so when the C++ TMTS was ex-

tended with a mechanism for relaxing the ordering guarantees on certain transactions. We

propose a dynamic mechanism for achieving this relaxation, which is reminiscent of the

memory order relaxed feature of the C++ memory model [6]. In x265, we found that the

most significant critical section in the program did not obey two-phase locking, and was

incompatible with TLE. A simple refactoring solved the problem, but raises an important

question: is two-phase locking a necessary or sufficient condition when using TLE? As with

PBZip2, both HTM and STM were able to improve the performance of x265, relative to

the original lock-based program. Our peak improvement was 9%.

In Section 3.2, we describe the high-level behavior of PBZip2 and x265. Section 3.3

discusses the quiescence mechanism used by GCC’s STM to ensure lock-based semantics,

and presents situations in which quiescence overheads are avoidable. Section 3.4 discusses

problematic lock-based code in x265, which is not immediately transactionalizable. Sec-

tion 3.5 briefly discusses additional challenges these applications present, and describes our

workarounds. Section 3.6 presents performance results for the two applications, and shows

that with modest effort, TM is able to outperform the original lock-based code. Section 3.7

concludes.

3.2 PBZip2 and x265

Our study focuses on the transactional elision of locks in two programs, described below.
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PBZip2 PBZip2 is a parallel version of the BZip2 file compression algorithm. Whereas

the original BZip2 algorithm takes as input a complete file stream, and then compresses it,

PBZip2 splits a file into multiple streams, and compresses those streams in parallel. The

user is able to specify the size of each stream, to balance the amount of work per thread

with the number of threads. Internally, the program follows a serial-parallel-serial pipeline

pattern. A producer thread creates stream descriptors and passes them to consumer threads.

Consumer threads compress or decompress streams, based on the descriptors they pull from

the queue. Their output is passed to the serial write stage, which produces the output file

by assembling its input in the correct order.

The implementation employs six locks and six condition variables. The critical sections

are friendly to transactionalization, in that they are small and do not make system calls.

The input, output, compression, and decompression operations are performed outside of

critical sections. The main source of contention is for the locks protecting the inter-stage

queues.

x265 x265 encodes and decodes video streams and images to and from the HEVC/H265

compression format. The encoding and decoding algorithms divide each frame into se-

quences of macro-blocks called “slices”, which are passed to worker threads. Each slice

consists of a sequence of CTUs (Coding Tree Units), which can be encoded by making

reference to another unit in the same frame (intra-picture prediction) or in another frame

(inter-picture prediction). The output frame is stored in a decoded frame buffer to be used

for the prediction of other frames.

x265 takes advantage of as much parallelism as possible to improve performance. With

frame-level parallelism, independent frames can be encoded simultaneously. Each video

frame is also divided into “slides”, which can be independently processed. Additional par-

allelism is achieved via a wavefront algorithm used in individual frames. Within each CTU,

CUs (Coding Units) distribute their analysis work to threads, which provide CU-level par-

allelism. At the lowest level, vector instructions can be enabled to process adjacent pixels

of a frame. To manage parallelism more abstractly, x265 includes wrappers over traditional

synchronization objects. These include a thread pool and a condition variable wrapper, as
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well as a wrapper around mutex locks. A depiction of the wavefront and row decomposition

appears in Figure 3.1.

Figure 3.1: HEVC wavefront parallel processing [93].

There are three main lock objects in x265:

• The lookahead lock prevents concurrent access to shared input and output queues of

frames; in essence, it mediates inter-frame parallelism.

• The CTURows lock is used by the wavefront processing algorithm to mediate com-

munication from a completed CTU to the CTUs that depend on it.

• The EncoderRow lock protects shared data when multiple threads work on the same

row within a slice of a frame.

There are additional locks, to include the “bonded task group” lock, which governs the

allocation of jobs to threads; a “parallel motion estimation” lock, which protects searches

for reference frames during motion searches; and a “cost lock”, which protects performance

metadata and metrics.

3.3 Quiescence and Lock Elision

Quiescence ensures that whenever a thread commits a transaction, it waits until all concur-

rent threads commit or abort and clean up before the thread is permitted to execute the

code that follows the transaction. While some STM algorithms have quiescence support

built-in [24, 29, 68, 111], the STM algorithm in GCC does not, and requires a committing

transaction to execute code similar in spirit to a user-space RCU Epoch [26].
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The C++ TMTS uses the notion of transactional sequential consistency [23] to describe a

memory model that includes locks, atomic variables, and transactions. The memory model

requires a global total order on synchronization operations, program order on synchroniza-

tion operations within a thread, and a global total order on all transactions. The model

does not handle explicit self-abort within transactions, which Shpeisman et al. previously

showed to be a source of significant additional complexity [105].

In this memory model, quiescence ensures that when a transaction transitions data

between shared and thread-private states, concurrent transactions accessing that data do

not race with legal nontransactional accesses. In HTM, such accesses are not possible. In

STM, they can result from delayed undo or write-back operations. In C++, publication

safety (i.e., ensuring the absence of races when transitioning data to a state in which it can

be accessed by transactions) is guaranteed for race-free programs, and thus quiescence is

only required for privatization safety (i.e., ensuring the absence of races when transitioning

data to a state in which it is no longer accessed by transactions) among STM transactions.

3.3.1 Problems with TLE and Quiescence

When the C++ TMTS is used to achieve lock elision, it entails a form of lock erasure:

whereas the original program may contain many locks that disjoint regions of memory, all

elided locks become transactions over a single shared heap. As an example, if a program

contained a queue protected by lock L1, and a stack protected by lock L2, the transactional

version would contain one class of transactions used to protect both the queue and the stack.

As a global synchronization operation, quiescence forces a transaction on the stack to delay

after it commits, waiting until any concurrent transaction touching the queue or the stack

has committed or aborted. Since the locks are erased during TMTS-based transactional

lock elision, the granularity of quiescence becomes unnecessarily coarse.

In addition, quiescence has the potential to result in transaction congestion. Consider

two transactions, T1 and T2, each of which takes U units of time to complete. Suppose that

T1 begins at time 0, and T2 begins at time U/2. When T1 completes, it must wait for T2

to commit or abort. This waiting does not increase the likelihood of T2 aborting, because

T1 has already committed. However, if T1 and T2 execute in tight loops, then after one
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Algorithm 10: Proxy privatization: When the privatizer’s transaction commits
and invalidates the vector update thread’s transaction, the potential race is between
line 4 of the proxy thread and the rollback of the vector thread’s transaction.

// Vector update thread
1 atomic
2 for k ∈ 0 . . . size do
3 update(vec[k])

// Privatizer thread
1 atomic
2 msg ← vec
3 vec← null

// Proxy thread
1 atomic
2 if msg = null then
3 retry

4 use(msg)

iteration, the interval between when the next T1 and next T2 begin is likely to be less than

U/2. Quiescence in T1 results in future congestion.

While HTM does not incur quiescence overheads, STM must. Furthermore, these over-

heads are growing increasingly expensive. Prior to 2016, GCC’s STM implementation per-

formed quiescence after every writing transaction. This, however, does not support proxy

privatization (see, e.g., Algorithm 10). Since 2016, every STM transaction quiesces after

committing in GCC.

To show the overheads caused by unnecessary quiescence in GCC, we apply various

levels of quiescence-avoidance on the STAMP TM benchmark suite [85].

Figure 3.2 presents performance for 8 common configurations of STAMP. We omit the

“Bayes” benchmark, which has nondeterministic behavior, and the “labyrinth” benchmark,

whose transactions are too infrequent to affect performance. We compare three levels of

quiescence avoidance for GCC’s STM. The Baseline version quiesces on every transaction,

even read-only transactions. It represents the default behavior of GCC STM after 2016.

However, it is overkill, since there is no proxy privatization in STAMP. NoProxy avoids

quiescence for transactions that do not perform writes. This is equivalent to the pre-2016

behavior of GCC. Finally, NoQuiesce removes quiescence overheads for all transactions.

The benefit of quiescence avoidance is dramatic, and increases with thread count. No-

Quiesce always outperforms the baseline, and only Yada fails to show separation between

NoProxy and NoQuiesce. This lack of separation is because read-only transactions were

the only opportunity we identified to avoid quiescence in Yada. For all benchmarks, we

see that unnecessary quiescence is a dominant overhead for STM. When we dynamically

remove quiescence from transactions, benchmarks that did not scale become scalable, and
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Figure 3.2: STAMP performance with varying levels of quiescence-avoidance.

benchmarks that appeared to run out of concurrency instead scale to the full core and

thread count of the machine.

3.3.2 Programatically Avoiding Quiescence

Alternatives to maximal quiescence draw from the observation that privatizing in C++

always involves at least one transaction. Two sufficient criteria arise: (a) require quies-

cence in the transaction that transitions the data to a nontransactional state, or (b) require

quiescence in the last transaction executed by a thread before it accesses data nontransac-

tionally. In practice, neither approach is straightforward: When transactions are nested,

or have complex memory access patterns, it is not feasible to expect programmers to know

which transactions privatize. Indeed, some transactions might only privatize under certain

circumstances (consider a consumer who reads from a producer/consumer queue: if the
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queue is empty, there is no data to privatize). Furthermore, proxy privatization (itself a

reasonable idiom, e.g., for a producer/consumer workload with per-consumer queues) can-

not support marking privatizing transactions (criteria “a” above) without added overhead.1

In the proxy privatization case, a writer privatizes the data, and then a transaction in

another thread executes before the data is accessed nontransactionally. In the non-proxy

privatization case, a writer is the last transaction to modify the data before nontransactional

access. In both cases, it is easier to achieve the second sufficient criteria: we could mark

the last transaction before the private access.

With complex control flows, nested transactions, and separate compilation, we do not

believe that programmers will be able to correctly identify the minimal set of transactions

that require quiescence. However, one simple heuristic can capture a fair portion of the

times when quiescence is not needed: if transactions T1 and T2 are executed sequentially by

the same thread, then T1 requires quiescence only if the thread’s memory accesses between

T1 and T2 might include data that was accessible by transactions prior to T1’s execution.

Prior work by Yoo et al. [122] suggests that in some workloads, quiescence can be

disabled for all transactions. Yoo et al. also showed that in such cases, disabling quiescence

for those workloads had a significant improvement on performance. Unfortunately, such an

approach is not compositional: any change to the program requires whole-program analysis

to determine if globally disabling quiescence remains correct. It also offers no value when

few transactions privatize.

We propose a new TM API function: TM.NoQuiesce. When called within a transaction,

this function indicates that the transaction should not quiesce after it commits. The call has

no meaning for strongly isolated HTM implementations, or for STM implementations that

do not require quiescence. The STM implementation is also free to ignore the API call. Two

examples are when the transaction making the call is nested within another transaction,

in which case its programmer is unlikely to know the privatization behavior of the parent

transaction, and when the transaction frees memory (certain TM-aware memory managers

require quiescence before returning memory to the operating system [57]).

1The issue is that existing STM algorithms would require writing transactions to quiesce before releasing
ownership of locations.
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Algorithm 11: Producer/consumer workload

// Producer thread
1 while true do
2 atomic
3 if ¬c.full() then
4 c.insert(produce())

5 TM.NoQuiesce()

// Consumer thread
1 while true do
2 atomic
3 if ¬c.empty() then
4 tmp← c.get()

5 else
6 tmp← nil
7 TM.NoQuiesce()

8 if tmp 6= nil then
9 use(tmp)

Algorithm 11 demonstrates the use of TM.NoQuiesce. The producer need never quiesce,

since it never privatizes data, and the consumer need only quiesce if it succeeds in extracting

an element from the collection (c). This example offers additional benefits: for single-

producer, multi-consumer workloads, the producer is more likely to be the bottleneck,

and avoids quiescence. Furthermore, when a consumer finds no work, it does not wait

unnecessarily before looking again.

3.3.3 Pitfalls

TM.NoQuiesce has the potential to significantly increase scalability: quiescence can intro-

duce cache misses linear in the number of threads, to determine when each thread is no

longer at risk of racing with a subsequent nontransactional access; and long-running trans-

actions can lead to a quiescence operation blocking unrelated threads’ committed trans-

actions for the duration of the long-running operation. However, when used incorrectly,

TM.NoQuiesce transforms an otherwise correct program into a racy program.

The problem is that Transactional Sequential Consistency demands a global total order

among transactions, and the transitive closure of transaction order and program order must

establish happens-before relations. Quiescence delays committing transactions long enough

to be certain of transitivity with program order across threads. In contrast, TM.NoQuiesce

asserts that data and/or control-flow dependencies within a specific transaction, or among

specific dynamic instances of transactions within the thread, are enough to provide happens-

before. When the assertion is faulty, the program becomes erroneous because there are

accesses to shared memory that may not be compatible with any global total order on
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transactions. We expect these errors to be easy to identify and fix using transactional race

detectors. For example, T-Rex [64] is able to identify all races that arise when a TM library

fails to provide privatization safety. Extending T-Rex to understand implicitly privatization-

safe STM with selective disabling of privatization appears to be straightforward.

3.4 Two Phase Locking and x265

Part of the appeal of TM is that it ought to be easier than using fine grained locks. By

extension, TLE ought to be easy: the programmer need only replace each lock-based critical

section with a transaction. Past work has revealed this task to be laborious, but not thought-

intensive. For example, in transactional memcached [102], the effort was in identifying which

transactions caused unnecessary serialization, and then creating transaction-safe variants

of the standard library functions that were responsible for the serialization.

In memcached, critical sections obeyed two-phase locking [37], by ensuring that all lock

acquires preceded all lock releases within each critical section. The only complication was

when a critical section also read a C++ atomic variable. The solution in that work was to

model these accesses as mini-transactions, and subsume them within the transaction that

replaced the critical section. In memcached, critical section behavior did not depend on an

atomic variable changing between accesses, and hence this was safe.

The transactionalization of PBZip2 mirrored past work with memcached: lock-based

critical sections were replaced with transactions, and as appropriate, functions were anno-

tated for transaction safety. During the transactionalization of x265, we found a situation

in which the pattern of lock acquisitions and releases was clearly not two-phase locking, and

hence the program could not be näıvely transactionalized: if the outer lock was replaced

with a transaction, the program could not complete.

Fortunately, the violation of two-phase locking in x265 was fixable. The specific behavior

was that a producer thread would acquire a lock on its output queue, then produce elements,

then unlock the queue (Algorithm 12). During element production, several smaller critical

sections ran, with inter-thread communication between the critical sections. These critical

sections could not be subsumed by the transaction on the output queue. Our solution was to
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Algorithm 12: A non-serializable critical section in x265.

// Lock held during produce stage
// of pipeline, to ensure ordering

1 out queue.lock()
2 element← new queue node()
3 out queue.enqueue(element)
4 produce(element)
5 out queue.unlock()

// Lock acquired during final stage of pipeline
6 out queue.lock()
7 e← out queue.dequeue()
8 out queue.unlock()
9 use(e)

// First step of produce uses m lock
produce(element)

10 m lock.lock()
11 use(element)
12 m lock.unlock()

. . .
13 produce2()
14 wait()

// Second step of produce also uses m lock
produce2(element)

. . .
15 m lock.lock()
16 use2(element)
17 m lock.unlock()

. . .

Algorithm 13: A ready flag avoids lock nesting, facilitating transactionalization.

// Lock no longer held during produce stage
1 out queue.lock()
2 element← new queue node()
3 out queue.enqueue(element)
4 element.ready ← false
5 out queue.unlock()

6 produce(element)
7 out queue.lock()
8 element.ready ← true
9 out queue.unlock()

// Lock acquired during final stage of pipeline
10 e← nil
11 out queue.lock()
12 if out queue.peek().ready then
13 e← out queue.dequeue()

14 out queue.unlock()
15 if e = nil then goto10
16 use(e)

embed a ready flag in each queue node, rather than keep the queue locked for the duration

of the program (Algorithm 13). Across several workload configurations and thread counts,

we confirmed that this modification did not affect performance. With the change in place,

each of the critical sections could be separately transactionalized.

Our experience introduces two research questions, which we leave as future work:

• Can it be proven that näıve transactionalization is safe for critical sections that obey

two-phase locking?

• Under what conditions will näıve transactionalization of non-two-phase locking code

remain safe?

To the best of our knowledge, no prior work has dealt with these problems, or explored

transactionalization of programs that did not obey two-phase locking.
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3.5 Additional Considerations

Library and compiler support for the TMTS remains inconsistent, and we encountered three

categories of code that caused transactions to serialize unnecessarily or behave incorrectly.

For completeness, we discuss each problem and its resolution below.

Logging Overheads Both applications can be configured to produce diagnostic output

to logs while locks are held. Such output cannot be rolled back, and hence ought to se-

rialize transactions. These outputs are similar to log output in the transactional versions

of memcached [102] and Atomic Quake [132]. In those applications, the programs did not

require any ordering among logging operations: log messages are timestamped, the order

can be determined post-mortem, and the return values of any syscalls during logging are

ignored. Consequently, those log operations could either be executed unsafely (and possibly

more than once) by STM, or deferred until the end of the transaction. In our applications,

we chose to defer output [127]: if we marked the output as unsafe, it would still lead HTM

to serialize.

Conditional Synchronization In order to support its soft real-time guarantees, x265

uses timeouts whenever a thread waits on a condition variable. To support this behavior, we

first refactored the relevant critical sections to be compatible with Wang’s transaction-safe

condition variable library [117]. However, the library did not support timeouts. We ex-

tended the condition variable library to allow timed wait operations via POSIX semaphores.

We verified that this change had no impact on the behavior of the original lock-based pro-

gram. However, in our experiments, condition variables did present a common source of

serialization, especially for HTM. We leave exploration of this problem as future work.

Vector Instructions Lastly, x265 can be configured to make use of vector instructions

(e.g., Intel SSE) during rendering. In all, there are over 50 distinct SSE instruction types

used by the program, all of which cause STM implementations to serialize. By analyzing

each SSE call, we were able to determine that the compiler correctly instrumented SSE

memory accesses, at which point the remaining SSE arithmetic operations did not require
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Figure 3.3: Performance of Transactionalized PBZip2

instrumentation. Our solution was to use the (deprecated) transaction pure annotation

to prevent these operations from causing the compiler to insert serializing instructions.

However, this is not a satisfactory long-term approach.
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3.6 Evaluation

In this section, we evaluate the use of TMTS-based transactional lock elision in PBZip2

and x265. As much as possible, we preserved the original structure of the source code.

The only exceptions are (1) our “ready” flag in x265, which allowed us to transform the

code to adhere to two-phase locking, (2) the addition of TM.NoQuiesce calls, and (3) minor

refactorings of transactions that wait as part of condition synchronization. We use Wang’s

transaction-friendly condition variables [117], but these require waiting transactions to be

enclosed in a loop, and rewritten so that a waiting transaction always performs its wait as

its last instruction. Since the TMTS does not officially support these condition variables,

we also considered the use of this refactored code without conditional waiting, in which case

threads repeatedly poll their wait condition within a small transaction.

All experiments were conducted on a 4-core/8-thread Intel Core i7-4770 CPU running

at 3.40GHz. This CPU supports Intel’s TSX extensions for HTM, includes 8 GB of RAM,

and runs a Linux 4.3 kernel. We used the GCC 5.3.1 compiler, and only modified its TM

implementations enough to support transaction-friendly condition variables (the default

HTM implementation does not, due to a lack of support for deferred actions). Results are

the average of 5 trials. The STM results use ml wt algorithm (a privatization-safe version

of TinySTM [39]. The HTM results fall back to a serial mode after hardware transactions

fail twice. We did not pin threads to specific cores: since our tests are on a single-chip

machine, pinning did not offer any significant benefit.

3.6.1 PBZip2

PBZip2 offers two independent operations, Compress and Decompress. We tested each,

using a 650MB test file. Within PBZip2, we varied the number of worker threads, as well

as the size of the blocks that were processed in parallel; all other configuration parameters

were left at their defaults. In our experiments, we varied the number of worker threads from

1 to 8, and considered block sizes of 100K, 300K, and 900K (the range is 100K to 900K,

with 900K being the default). Apart from the worker threads, there is a main thread, which

runs the benchmark harness but does not participate in the computation.
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Figure 3.4: Performance of Transactionalized x265

We compare five algorithms. The baseline is the original code, which uses pthread

mutex locks. We then consider three STM algorithms: STM + Spin uses GCC’s ml wt

algorithm, with spin waiting when the baseline would wait on a condition variable. STM

+ CondVar uses transaction-friendly conditional variables. STM + CondVar + NoQuiesce

adds dynamic disabling of quiescence for selected transactions. Lastly, the HTM + CondVar

executes the transaction using GCC’s HTM support.

The main use of critical sections in PBZip2 is to protect queue metadata. Therefore,

the average size of critical sections is small. Each thread can access the queue metadata

after it finishes compressing or decompressing its block. Conflicts among critical sections

are rare: for a 650MB test file, we observed between 950 and 1100 transactions, of which

0.1% aborted at least once in STM. In the HTM experiments, 13% to 18% of transactions

aborted twice and fell back to serial mode. Since current HTM support does not report

the size of the working set on transaction abort, it would be beneficial for programmers to

be able to suggest retry policies on a transaction-by-transaction basis: for queues that are

expected to be un-contended, more retries before serialization might be appropriate.

Figure 3.3 shows the performance of the TM algorithms on PBZip2. STM + Spin

performs the worst in all conditions except for Figure 3.3(b). This is because spinning not
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Figure 3.5: Retry rate for Netflix test (10M Transaction Commits)

only wastes compute resources, but also increases contention (between caches and between

transactions). In Figure 3.3(b) HTM + CondVar performs worse than STM + Spin in some

cases because nearly 20% of HTM transactions fall back to the serial path. Note, however,

that at higher thread counts STM + CondVar and STM + CondVar + NoQuiesce both

outperform the baseline in Figures 3.3(a) and 3.3(f). At low threads, conflicts are rare, and

STM instrumentation overheads dominate.

Disabling quiescence offers mixed results. There is, necessarily, extra tracking and in-

strumentation overhead, which much be offset. In Figures 3.3(b) and 3.3(d), disabling

quiescence offers the best performance at high concurrency levels, which correspond to the

scenarios in which the most gain is expected. Note, too, that HTM + CondVar often out-

performs the baseline, achieving a peak speedup of 8.5% in Figure 3.3(a). In this case,

the fallback rate remains high (15%-18%), suggesting that finely tuning fallback strategies

would offer even better performance.

3.6.2 x265

To evaluate x265, we considered three file sizes: small (38MB), medium (735MB), and a

real movie downloaded from Netflix (3810M). The application defaults to a pool of 8 worker

threads, 3 frame threads, and a main thread. In our experiments, we varied the number

of worker threads, and again considered the five algorithms from above. The impact of

spinning was disastrous in this workload, even at low thread counts. To maintain readability

in Figure 3.4, we plot speedup relative to the single-thread pthread execution, instead of

73



www.manaraa.com

execution time.

The peak performance of HTM was 9.5% better than pthreads at 4 threads (Fig-

ure 3.4(b)). Moreover, HTM outperformed pthreads in almost every case. Again, this

was with the untuned GCC HTM support: the abort rates in Figure 3.5 suggest that better

performance is possible by tuning the fallback policy. We did not observe a significant or

consistent impact on performance when we disabled quiescence. In the worst cases, dis-

abling quiescence even decreased performance relative to STM + CondVar. Surprisingly,

Figure 3.5 shows that disabling quiescence resulted in slightly higher abort rates for the

STM execution. Whereas we expected quiescence to cause bursty transaction start times,

the fact that transactions were usually small meant that quiescence delays were not a sig-

nificant contributor to latency.

Across all experiments, we observed many situations in which STM + CondVar and

HTM outperformed the pthread baseline. This result is in spite of the lock erasure effects

of TMTS-based transactional lock elision. However, we required support for conditional

synchronization, which is currently lacking in the TMTS. We were particularly surprised

by the performance of STM; its overheads at transaction boundaries, and on every access

of shared memory, were still less than the gain in performance. A variety of optimizations

could take this result even further, such as reducing latency for small transactions [33] or

making quiescence avoidance conditional on the number of threads (to reduce bookkeeping

costs at low thread counts).

3.6.3 Is Quiescence Overhead Important?

Given our past experience with transactional workloads, we expected eliminating quiescence

to have a more significant impact on performance. To gain a deeper understanding of its

potential benefits, we conducted targeted microbenchmark experiments on a larger machine,

with two Xeon X5650 CPUs, each of which has 6 cores/12 threads and runs at 2.67GHz.

This test machine includes 12GB of RAM, and runs a Linux 4.4.0 kernel. We used the GCC

5.3.1 compiler. Results are the average of three 10-second trials. This CPU does not support

hardware TM. The STM results use the same GCC STM algorithms and configurations as

prior experiments.
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Figure 3.6 presents experiments for three data structure microbenchmarks and two con-

figurations. We limit our focus to high-contention scenarios with small transactions: a

list-based set storing 6-bit keys, a hash-based set storing 8-bit keys, and a tree-based set

storing 8-bit keys. Transactions execute randomly-selected operations using randomly-

selected keys. On the left side of the figure, operations are split evenly between inserts and

removes. On the right side, half of the operations are lookups, with the remainder split

evenly between inserts and removes.

We consider three STM implementations: the baseline GCC implementation (STM),

with quiescence after every transaction; an implementation in which no transactions quiesce

(NoQ); and our implementation that uses TM.NoQuiesce to selectively disable quiescence

(SelectNoQ). Note that eliminating all quiescence is not correct: whenever a removing

transaction frees memory, the GCC TM requires it to quiesce before returning that memory

to the system allocator.

In the list experiments (Figure 3.6a and 3.6b), selectively disabling quiescence offers

the same benefit as the unsafe NoQ option. Note that in this workload, little scaling is

expected. Note, too, that the dip in performance at two threads is expected; it results

from inter-chip communication on a global counter within the GCC STM implementation.

Surprisingly, with 50% lookups, selectively disabling quiescence outperforms globally dis-

abling quiescence. In the experiment, the list is initially 50% full, and hence at any time a

transaction has a 12.5% chance of performing a successful remove operation and quiescing.

Since the benchmark executes transactions in a tight loop, any quiescence represents a pe-

riod with less contention. In particular, for transactions that must traverse to the end of

the list, quiescence by concurrent threads provides a chance to make forward progress. In

essence, a small amount of quiescence provides congestion control.

In the hash and tree workloads, conflicts are much less likely, since transactions access

disjoint regions of the data structure. In these cases, SelectNoQ performs on par, though

slightly below NoQ, and both outperform the baseline STM. Moving from hash to tree,

conflicts become more likely. As they do, we see the same trend as with the list: at high

contention, occasional quiescence gives expensive transactions a chance to complete.

In summary, we observe that removing quiescence has a benefit that is proportional
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Figure 3.6: Performance of TM.NoQuiesce on microbenchmarks

to the frequency of transactions and their length. Even when transactions are infrequent

or tiny, quiescence is worth eliding. When transactions become more common and larger,

quiescence becomes a dominant overhead, and removing it correctly and safely is a valu-

able optimization. These experiments also explain the variability in STM performance in

PBZip2 and x265: when an STM implementation does not provide any other form of con-

tention management, quiescence becomes a congestion control tool. As the TMTS expands
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to include programmer-specified policies for how to handle conflicts, this behavior should

become less likely.

3.7 Conclusions

In this chapter, we applied the C++ TMTS to elide locks in two real-world programs,

PBZip2 and x265. In both cases, the programs were already carefully crafted to avoid lock

contention and to scale. Nonetheless, transactional lock elision improved performance by

up to 9%. To the best of our knowledge, this is the first example of the TMTS, as imple-

mented in the GCC compiler, improving the performance of real-world code. Moreover, the

improvement spanned both hardware and software implementations of TM.

Unfortunately, our experience does not validate the expectation that TLE will be easy.

In x265, the most important critical section was not serializable, and we could not transac-

tionalize it without understanding several thousand lines of code, and changing the way in

which threads interacted with one of the central queues in the program. There is exciting

future work in this area, exploring the conditions under which an unmodified critical section

can and cannot be transactionalized. Our intuition is that two-phase locking is a sufficient

condition, but a more formal study is needed.

We also showed that quiescence avoidance need not be thought of as an all-or-nothing

proposition. Specifically, TMTS-based lock elision introduces orderings that a fine-grained

locking program would not display. Allowing programmers to avoid these overheads, with-

out sacrificing composability, will speed up STM executions of a program. However, our

experiments show that quiescence currently serves as a form of implicit congestion control,

and eliminating it can lead to increased abort rates and decreased performance. We believe

that the TMTS should allow programmers to specify contention management policies, so

that the effect of quiescence can be more predictable.
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Chapter 4

Supporting Irrevocable and

Long-Running Operations

This chapter introduces atomic deferral, an extension to TM that allows programmers to

move long-running or irrevocable operations out of a transaction while maintaining serializ-

ability. The original work was published in “Extending Transactional Memory with Atomic

Deferral” at the 21st International Conference on Principles of Distributed Systems [125],

and in “Brief Announcement: Extending Transactional Memory with Atomic Deferral” at

the 29th ACM Symposium on Parallelism in Algorithms and Architectures [124].

4.1 Introduction

There are only a few examples of TM being used in “real” software [63, 102]. Why is TM

not more widely adopted? One reason is that TM implementations often do introduce sig-

nificant overhead, especially when transactions are large and there is no hardware support.

Another is that adapting a program to use TM is not always a simple matter of replacing

lock-based critical sections with transactions, because transactions cannot execute some

kinds of operations (e.g., I/O and certain system calls), and most TMs do not support

condition synchronization and other important synchronization patterns. Achieving good

performance with TM often requires significant changes to the code, both to reduce the size

and number of large transactions and to move “unsafe” operations within critical sections
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Figure 4.1: Motivation for atomic defer. On the left, T1’s transaction includes a long running
operation using C. On the right, C is locked, and then the operation on C is deferred until
after the transaction commits. The use of locking and deferral of the operation on C
enables the operations by threads T2 and T3 to progress more quickly, without violating
serializability.

out of transactions while still ensuring correct synchronization.

In this Chapter, we introduce language and run-time support for the atomic deferral of

operations in transactions: deferred operations do not execute until after the transaction

commits. Unlike prior work on deferred operations, atomic deferral does not violate serial-

izability: concurrent transactions cannot observe an intermediate state in which the trans-

action’s updates are complete but its deferred operation’s updates are not. This property is

particularly important for operations that perform output: if the output fails, compensating

or retrying operations can be performed as part of the deferred operation so that it appears

to be atomic with the deferring transaction.

We implement atomic deferral by introducing transaction-friendly locks, that is, locks

that can be acquired and released within transactions, and to which transactions can “sub-

scribe”. With these locks, programmers can “mix and match” lock-based and transaction-

based synchronization, using whichever is appropriate to the need. We use these locks to

protect shared data accessed by deferred operations. The atomicity of the transaction and

its deferred operation is preserved by acquiring the appropriate locks before committing the

transaction.

4.2 A Motivating Example

To motivate atomic deferral, consider the execution depicted on the left side of Figure 4.1,

which captures behavior we observed when transactionalizing the PARSEC dedup kernel [8].

T1 executes a transaction that first accesses locations A, B and C, and then does a lengthy
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operation that accesses only C. Concurrently, T2 executes a transaction that accesses B.

Because these transactions conflict, either one of them must abort, or T2 must wait until

T1 commits before it can proceed with the part of its transaction that accesses B, which

is what happens in this case. Because T1 may privatize some memory, after it commits, it

must quiesce, waiting for T2 to finish (either commit or abort).

The situation is even worse for T3, which accesses a completely different location, and

so does not conflict with either T1’s or T2’s transaction. Nonetheless, T3 might privatize

some memory, and thus it must quiesce until all concurrent transactions complete, so it

must wait for T1’s lengthy operation to complete, and then for T2’s transaction to complete

afterwards , before it can proceed.

Note, however, that T1 is only accessing C in the lengthy operation at the end of its

transaction. If it could defer that operation until after it commits, then T2 could start the

section of its code that accesses B earlier, and likely commit before T1 completes its lengthy

operation on C. T3 can also stop quiescing earlier (i.e., when T2 commits). This case is

depicted one the right side of Figure 4.1.

One problem with doing this, however, is that a thread accessing C after T1 commits

the initial part of its transaction but before T1 finishes its final lengthy operation on C will

see an intermediate state of T1’s transaction, violating atomicity. To avoid that, we should

prevent other threads from accessing C in that interval. This is represented by the small

“LC” and “RC” operations (for “lock C” and “release C” respectively). Achieving this is

the core conceptual contribution of this paper, and we show how to do it in the next section.

Prior studies of concurrent applications [102, 117, 127] found that output operations

and long-running operations occur often while locks are held. The consequences of such

operations are less severe in lock-based code than in programs with TM, primarily because

the lock-based programs use many locks: a long-running operation protected by lock L1 does

not impede a thread executing a critical section protected by L2. However, long-running

operations tend to hold as few locks as necessary.
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4.3 Extending TM with Atomic Deferral

We support atomic deferral using two new keywords: the deferrable annotation on classes,

and the atomic defer function, which takes as arguments a function and a list of objects,

each of which must be an instance of a deferrable class. To defer an operation, a program-

mer calls atomic defer with a function implementing the deferred operation and a list of

all the shared objects that this function may access. Fields of deferrable objects must

not be accessed directly, but only through getters and setters (a recommended software

engineering practice in any case). Thus, if o is an object with a deferrable class type and

an expensive method, then we can defer the execution of that method within a transaction

by writing:

λ← () { o.expensive() }

atomic defer(λ, o)

The deferred operation will be executed immediately after the enclosing transaction

commits, and in such a way that no other transactions can see a state that reflects the

effects of the transaction but not those of its deferred operation. A deferred operation will

see any effects of the transaction that occur after the call to atomic defer. If atomic defer

is called multiple times within a single transaction, the deferred operations will be executed

in the order of their respective calls to atomic defer, and the effects of earlier deferred

operations will be visible to later ones.

4.3.1 Implementing Atomic Deferral

We implement atomic deferral by using locks to protect accesses to deferrable objects.

To provide atomicity, we acquire the locks required by the deferred operation before the

transaction commits. We also need a way to notify transactions that access a deferrable

object (directly as part of the transaction, not deferred) when the lock protecting it has

been acquired (by a transaction that calls atomic defer with the object): such transactions

must abort and retry after the deferred operation has completed (and the corresponding

locks released).
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Algorithm 14: Implementation of atomic deferral

// Extensions to classes annotated as deferrable

deferrable class T
lock : TxLock // implicit per-instance lock
. . . // programmer-defined fields

function transaction safe Method(. . .)
// subscribe to the implicit lock
TxLock.Subscribe(lock)
// programmer-defined logic
. . .

function atomic defer(l : λ, objs: Deferrable . . . )
// Use transaction to acquire locks without deadlock

1 transaction
2 for o : objs do
3 TxLock.Acquire(o)

4 deferred ops.append(〈l, objs〉)

Additional Per-Thread TM Metadata:
// all deferred operations for current transaction
deferred ops : list〈λ, list〈Deferrable〉〉

function TxEnd()
// Standard STM Commit; HTM uses a special

instruction
1 ValidateReadsFinalizeWrites()

// STM-only: ensure transaction finishes before λs
run

2 Quiesce()
// Reset thread’s TM metadata

3 move(tm free list, local frees)
4 move(deferred ops, local defers)
5 ResetLists()

// Execute deferred operations
6 for 〈l, objs〉 ∈ local defers do
7 l.execute()
8 for o ∈ objs do TxLock.Release(o)

// Reclaim memory, reset lists
9 for ptr ∈ local frees do free(ptr)

To this end, we designed transaction-friendly locks, which can be acquired and released

within a transaction, and which provide a subscribe method. The subscribe method must

be called from within a transaction, which blocks (or aborts) until the lock is either free or

held by the subscribing thread. Multiple threads can subscribe to a lock if it is free. We

describe how we implement transaction-friendly locks in Section 4.3.2.

Pseudocode for implementing atomic deferral appears in Algorithm 14. In addition

to providing implementations for atomic defer and deferrable, we modify the commit

operation TxEnd. This code assumes that TxLock is a class of transaction-friendly locks,

and that Deferrable is a base class for all deferrable classes.

For deferrable classes, we add a field that maintains a transaction-friendly lock that

protects the class, and we inject a call to TxLock.Subscribe for this lock as the first

instruction of the transaction-safe version of every member function.1

The atomic defer function first acquires the locks of all the deferrable objects passed

to it, and then appends all of its arguments (the function representing the deferred operation

and the list of deferrable objects it may access) to deferred ops, a thread-local list of

deferred operations. This list will be used when the transaction commits, as described

below.

1STM implementations typically maintain two versions of each transaction-safe function, one that is
called within transactions and one that is called when not in a transaction.
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When committing the transaction, we first proceed as usual, validating the read set,

finalizing the writes, and then quiescing to avoid privatization problems. Remember that

any object that might be accessed by deferred operations has already been locked (i.e., when

atomic defer was called with the object), so no other transaction can see any writes to it.

We then execute the deferred operations in order, releasing the locks on the deferrable

objects associated with each deferred operation after that operation is complete. (If an

object is accessed by multiple deferred operations, each of them would have acquired the

corresponding reentrant lock, and so it is not actually released until the last such operation

completes.)

The enclosing transaction may have freed memory, which is normally deferred by the

TM after the transaction has quiesced. Because deferred operations may refer to memory

that was subsequently freed by the transaction, we delay the freeing of that memory a bit

more, until all the deferred operations have completed.

Because deferred operations may use transactions internally, we need to make de-

ferred ops and tm free list available for their use. Thus, we copy them into local variables

before executing any of the deferred operations.

To argue that this implementation is correct, that is, that a transaction and its deferred

operations appear atomic, we draw an analogy with two-phase locking, a well-understood

technique known to guarantee atomicity. Specifically, a transaction can be thought of as

acquiring and holding a single global lock until the transaction commits. Because the

lock for every object accessed by deferred operations is acquired before the transaction

commits, there is an initial phase in which locks are only acquired (i.e., up to the point

that the transaction commits), and a concluding phase in which locks are only released

(including the implicit global lock released by the transaction on commit). So all locks are

held between the time that the commit operation is invoked and the time that the commit

actually occurs. We must also ensure that every access is protected by the appropriate lock,

which is why the programmer must provide, when calling atomic defer, all the objects that

the deferred operation may access. If a deferred operation accesses some object not passed

to atomic defer, then a data race may occur.

83



www.manaraa.com

Algorithm 15: A transaction-friendly, reentrant mutex lock

Fields of TxLock Object:
owner : transaction id // Lock holder ID
depth : Integer // For reentrancy

function TxLock.Acquire(l)
1 atomic

// Common case: lock is unheld
2 if l.owner = nil then
3 l.owner← me
4 l.depth← 1
5 return

// Handle reentrancy/nesting
6 else if l.owner = me then
7 l.depth← l.depth + 1
8 return

// Wait (spin or yield CPU) until lock is
released

9 spin()
10 retry

function TxLock.Subscribe()

// Must be in transaction to call
1 if owner 6= nil ∧ owner 6= me then
2 retry

function TxLock.Release(l)
1 atomic

// [Optional] Forbid handoff of held lock
2 if l.owner 6= me then
3 fatal error

// Handle reentrancy/nesting
4 else if l.depth > 1 then
5 l.depth← l.depth− 1
6 return

// Else no reentrancy/nesting
7 l.depth← 0
8 l.owner← nil

4.3.2 Transaction-Friendly Mutex Locks

The heart of our atomic deferral mechanism is a transaction-friendly mutual exclusion lock,

whose pseudocode appears in Algorithm 15. The TxLock is reentrant, storing an owner and

a count of the locking depth. In this manner, a thread that holds the lock may re-acquire it

by incrementing the count. Before any other thread can acquire the lock, the current owner

must release the lock as often as needed to ensure depth = 0. Since the implementation uses

transactions, the owner and depth fields need not be packed into a single machine word:

they are only accessed within transactions. A thread that is currently in a transaction

may acquire and/or release TxLocks, because it is correct in C++ to nest transactions.

Among other things, this means that a thread can acquire multiple locks in a deadlock-free

fashion, even without a global locking order: it need only issue all acquisitions inside of a

transaction.

TxLocks are elidable within transactions, via the Subscribe method: a transaction that

subscribes to a TxLock blocks until the lock is either unheld, or held by the calling thread.

Subscription only reads the owner field, which allows concurrent subscription by multiple

threads. When any thread acquires the TxLock, all subscribing transactions will conflict

with the new lock owner, and will abort. When the TxLock is acquired, the C++ TMTS

ensures correct fence semantics: since the transaction accesses shared memory, the TM
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implementation is required to guarantee that memory accesses preceding the transaction

order before it, and memory accesses following the transaction order after it.

If the C++ TMTS adds efficient support for retry, transactions could yield the CPU

if they attempt to acquire or subscribe to a lock that is held by another thread, and would

be woken automatically when the lock is released. In the meantime, we implement retry

by placing an atomic transaction inside a while loop, replacing the retry instruction with

an exception throw, and adding a break as the last statement in the transaction.

4.3.3 Practical Concerns

Deferring operations creates a nonlinear control flow within a program. This nonlinearity is

not observable to concurrent threads: the transaction and its deferred operations appear to

be a single, serializable operation. However, within the transaction, the programmer must

be mindful of a few challenges.

First, the state of the object and thread-private data at the time when the atomic defer

keyword appears is not immutable, and may change in the suffix of the transaction that

executes before the deferred operation. In addition, the deferred operation does not execute

transactionally, and thus races can occur if the deferred operation accesses shared data not

protected by the associated TxLocks.

Second, the programmer must encapsulate shared objects carefully. Consider a deferred

operation that performs a write of byte stream B to file descriptor F . If F is shared, then

it should be a field of a Deferrable object. If B is shared, then it, too, should be a field

of a Deferrable object. Programmers must decide if B and F should be fields of the same

deferrable object, or of multiple objects.

Third, since system calls made within a deferred operation happen immediately, some

possibility for performance bottlenecks remains. For example, an fsync within a deferred

operation is often necessary. With atomic defer, the fsync and any associated error

recovery can be atomic with the transaction, and will not block all transactions. However,

lengthy deferred operations will still block concurrent transactions that call a method of

the associated deferrable objects.
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Algorithm 16: Diagnostic logging from a critical section

// Version with irrevocable transactions
1 synchronized

// x is a mutable string
// i is a mutable integer

2 . . .
3 fprintf(stderr, str, x, i)
4 free(x) // Optional
5 . . .

// Deferrable for the log file’s descriptor
class defer fprintf: public Deferrable

fd : file // output file descriptor
. . .

// global instance of log file descriptor
df : defer fprintf(fd← stderr)

// Version with atomic defer
1 atomic
2 . . .
3 tmp← sprintf(str, x, i)
4 λ←()
5 fprintf(df.fd, tmp)
6 free(tmp)
7 free(x) // Optional

8 atomic defer(λ, df)
9 . . .

4.4 Programming With Atomic Defer

We now present examples of atomic defer in real applications. The examples depict com-

mon use cases, and show the deferral of increasingly complex operations without sacrificing

atomicity or resorting to serialization.

4.4.1 Basic Logging

In programs such as memcached [102] and Atomic Quake [132], critical sections occasionally

perform logging operations, such as error messages and diagnostic writes to per-thread

logs. The program does not require any ordering among logging operations: they are

timestamped, and the order can be determined post-mortem. The return values of the

output operations are typically ignored. An example appears in Algorithm 16.

When the values to be logged (x and i) are mutable shared data, existing programs

resort to irrevocability or they skip the logging operation. When the values can be en-

capsulated in a Deferrable object, atomic defer is a straightforward transformation: the

output string is prepared within the transaction, and the output is deferred until the end

of the transaction. Note that this approach ensures ordering of all logging operations on

the encapsulated file descriptor. A simpler approach, when ordering is not needed, is to

pass nil as the second argument on line 8. This approach causes serialization only among

transactions that use df .

Because transactional versions of existing programs tend to omit this instrumentation
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Algorithm 17: Durable output with guaranteed order

// Deferrable wrapper for file descriptors
class defer fd: public Deferrable

fd : file // output file descriptor
. . .

// Deferrable objects
fdD1 : defer fd(fd← . . .)
buffD1 : defer buffer(buf← . . . ,flag← false)

// Durable output to fdD1

atomic
1 . . .
2 λ←()
3 write(fdD1.fd, buffD1.buffer)
4 fsync(fdD1.fd)
5 buffD1.flag← true

6 atomic defer(λ, fdD1, bufD1)

// Deferrable wrapper for output buffer
class defer buffer: public Deferrable

buf : buffer // buffer data
flag: boolean // is buffer written?

// Deferrable objects
fdD2 : defer fd(fd← . . .)
buffD2 : defer buffer(buf← . . . ,flag← false)

// Conditional durable output to fdD2

atomic
7 Subscribe(buffD1)
8 if buffD1.flag then
9 λ←()

10 write(fdD2.fd, buffD2.buffer)
11 fsync(fdD2.fd)
12 buffD2.flag← true

13 atomic defer(λ, fdD2, bufD2)

in order to avoid serialization, we did not observe a performance impact when applying

atomic defer to memcached. However, atomic deferral keeps the code robust and complete

without adding too much burden on programmer, and it makes it easier to debug programs

during development, by enabling non-serializing printf debugging.

4.4.2 Durable Output

Programs often rely on the fsync system call to persistent output. In some cases (e.g.,

durable database operations), it is necessary to order outputs based on the timing of fsync

calls, such that file F2 is not updated until after F1’s updates have reached the disk. Simply

deferring an fsync operation in this case is insufficient. With atomic defer, we can en-

capsulate the completion status of the fsync in a Deferred object that is associated with

the deferred fsync operation.

In Algorithm 17, one thread executes the transaction (T1) on lines 1 to 6, and another

executes the transaction (T2) on lines 7 to 13. We wish to ensure that T2 does not write

buff D2 to file fdD2 unless T1’s write of buff D1 to file fdD1 has been persisted to disk. Since

the flag indicating the completion of T1’s fsync is encapsulated in a Deferrable object,

and T1 sets that flag in an operation that has been deferred, we know that buff D1’s implicit

lock will be held during the time that the flag is set, and will not be released until after
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Algorithm 18: MySQL critical sections in file pool management that are used in
asynchronous I/O

// atomic defer: types and variables
class file system t: public Deferrable
. . .
space list : file space t

// wrap the file system as a deferrable object
file system : file system t

mySQL initialize (. . . )
// open tablespace data files

1 atomic
. . .

2 λ←()
3 for space ∈ space list
4 for node ∈ space
5 node← open(. . . )

6 atomic defer(λ,file system)
. . .

mySQL destroy (. . . )
// close tablespace data files

7 atomic
. . .

8 λ←()
9 for space ∈ space list

10 for node ∈ space
11 close(node)

12 atomic defer(λ,file system)
. . .

mySQL io prepare (. . . )
13 close more :
14 atomic

// check system states and select files
. . .

15 λ←()
16 if close(file) = −1
17 error

18 n open← n open− 1
19 if (n open ≥ max n open)
20 need close← true
21 goto end

// check the node to do I/O
22 if ¬node.open

// get file size, do an open and close
// save metadata for future I/O

23 if node.size = 0
24 node← open()
25 offset← lseek(file, 0,SEEK END)
26 success← pread(two pages)
27 close(node)

28 node← open()

29 end :

30 atomic defer(λ,file system)
. . .

31 if (need close)
32 goto close more

the fsync returns. Consequently, when T2 executes line 7, three cases are possible: (1) T1

has not yet executed line 6, in which case line 7 returns, and then line 8 evaluates to false;

(2) T1 has executed line 6 but has not completed lines 3 to 5, in which case T2 will call

retry and ultimately land in the third case; or (3) T1 has completed its deferred execution

of lines 3 to 5, in which case T2 can subscribe to buff D1, and then observe a true value on

line 8. Note that T2 can only perform its write in the third case, which orders lines 3–5

before lines 10–12, and thus the deferred outputs occur and reach the disk in the required

order.

4.4.3 Opening Files as Output

Our final example comes from the MySQL InnoDB storage engine. InnoDB maintains a

pool of file descriptors, which is protected by a lock. Metadata is associated with each file
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descriptor, and allows updates to files to be performed via asynchronous I/O. For example,

to append new records to the end of a file, a thread locks the pool, updates the size of the

file, and then unlocks the pool. It then issues an asynchronous write. Subsequent appends

will follow the same protocol, and hence will appear at a later point in the file, even if their

writes reach the disk earlier.

While reads and writes do not occur in critical sections, and hence would not serialize

a transactional version of InnoDB, the management of the pool depends on the ability to

open and close files dynamically, in order to stay below a pre-set maximum number of open

files. If a file must be opened when the pool is at capacity, then a thread will lock the

pool, close some other files that do not have outstanding accesses in-flight, and then open

the new file. In transactional InnoDB2, this operation requires irrevocability, and serializes

all memory transactions, to include those performing read-only queries of data within the

database.

With atomic defer, the pool becomes a Deferrable object. On any modification to

file descriptor metadata, a thread uses a transaction that subscribes to the pool. Thus, file

operations can proceed fully in parallel, since they use asynchronous I/O to perform their

file accesses, and transactions to operate on disjoint file metadata regions. In the uncommon

cases where files are opened and closed, the system calls are deferred from a transaction.

While the system calls are in-flight, concurrent accesses to the pool stall (via retry). Once

the pool is returned to a usable state, any suspended threads resume.

4.5 Performance Evaluation

We now present experiments that demonstrate the benefit of atomic defer. We conduct

tests on two platforms. In charts depicting scalability up to 8 threads, the platform is a

4-core/8-thread Intel Core i7-4770 CPU running at 3.40GHz. This CPU supports Intel’s

TSX extensions for HTM, includes 8 GB of RAM, and runs a Linux 4.3 kernel. Experiments

with larger thread counts were conducted on a machine with two 18-core/36-thread Intel

E5-2699 V3 CPUs running at 2.30GHz. This CPU also supports TSX, includes 128 GB

2Unfortunately, adding TM to InnoDB revealed a bug in GCC, which produces an internal compiler error.
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of RAM, and runs a Linux 4.8 kernel. Our extensions were implemented in GCC 5.3.1.

Results are the average of 5 trials.

4.5.1 Performance of atomic defer on a Transactional I/O Microbench-

mark

One motivation for atomic defer is to avoid the serialization of synchronized transac-

tions, while allowing output that is atomic with respect to the transaction. We begin

with a microbenchmark study to observe the behavior of transactions that perform irre-

vocable operations on files. Our microbenchmarks are patterned after work by Demsky

and Tehrany [25]. Whereas they required custom instrumentation of system calls in or-

der to make them transaction safe, we run I/O operations without instrumentation, using

either irrevocability or atomic defer. Algorithm 19 presents the general behavior of our

microbenchmarks: a transaction produces content and identifies a file to update. It then

performs I/O, which includes opening a file, reading the file length, and appending data

to the file. The I/O can be deferred or executed irrevocably. To use atomic defer, we

encapsulate the I/O streams in deferrable objects, and then use atomic defer to delay

the operation on line 16. Figure 4.2 presents experiments with four configurations of the

microbenchmark. In each case, threads cooperate to complete a total of 1M operations.

The figure presents results for STM, but trends for HTM are the same.

Figure 4.2 (a) explores the overhead of atomic deferral when there is only one file,

and hence no concurrency, by comparing performance when transactions are replaced with

a coarse-grained lock (CGL), and when transactions use irrevocability (irrevoc), or atomic

deferral (defer). We see that the baseline GCC TM implementation (irrevoc) is well-tuned to

handle irrevocability: it serializes transactions early, avoids instrumentation, and achieves

performance comparable to CGL. In contrast, atomic defer pays a constant overhead

per transaction to support rollback, even though no rollbacks occur. As the thread count

increases, overheads due to retry cause additional slowdown. This is partly a result of

our retry implementation aborting and immediately retrying, instead of de-scheduling the

transaction until it can make progress. Until the C++ TMTS includes efficient retry, this

cost is unavoidable.
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Algorithm 19: An example of deferring I/O and system calls

// Encapsulate streams in a Deferrable object
class defer file: public Deferrable

input // input stream
output // output stream

// An array of files
dfs: defer file[]

// Operation to be deferred
1 λ←(id, content)

// Read File
2 if ¬dfs[id].input.open() then error

// Get the length of the file
3 dfs[id].input.seekg(0, end)
4 len← dfs[id].input.tellg()
5 dfs[id].input.close()

// Write to the file and close
6 tmp← format(content, len)
7 dfs[id].output.write(tmp)
8 dfs[id].output.close()

// Irrevocable version of benchmark
9 synchronized

10 content← . . .
11 id← . . .
12 λ(id, content)

// atomic defer version of benchmark
13 atomic
14 content← . . .
15 id← . . .
16 atomic defer(λ(id, content), dfs[id])
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Figure 4.2: Atomic defer performance on an I/O microbenchmark

Figures 4.2 (b) and 4.2 (c) expand the number of files to 2 and then 4, and threads update

files with equal probability. We include another non-transactional baseline, with one fine-
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Figure 4.3: Performance of PARSEC dedup with atomic defer

grained lock (FGL) per file. We again see that single-threaded code has higher overhead

when using atomic defer, due to instrumentation and the management of lambdas. While

the behavior of CGL and irrevoc is unchanged, deferral now shows scaling on par with fine-

grained locks, achieving indistinguishable performance at 2 and 4 threads. When the thread

count greatly exceeds the potential concurrency (e.g., 8 threads and 2 files, Figure 4.2 (b)),

we still see extra overheads from retry. However, when there is enough concurrency in the

workload (e.g., 4 files), atomic defer scales well.

Finally, in Figure 4.2 (d) transactions append to files that are kept open throughout

the experiment. There are still 4 files, but the smaller critical sections reveal an overhead

in the irrevocability mechanism: when one transaction becomes irrevocable, the others

block, possibly yielding the CPU. When the irrevocable transaction is brief, the overhead

of yielding becomes visible, and irrevoc degrades worse than CGL. Meanwhile, FGL has

flat performance, and defer overcomes latency at 1 thread to be competitive with FGL.

4.5.2 Performance of atomic defer on PARSEC Dedup

Wang et al. reported [117] that PARSEC’s dedup kernel [8] ceased to scale when trans-

actions replaced locks. Dedup is a pipeline application, and the original file output stage

performs output while holding a lock; Wang’s version replaces that lock with an irrevocable

transaction. When the irrevocable transaction executes, it must serialize all concurrent

transactions.

When we rewrote dedup’s output operation to use atomic defer, irrevocability ceased
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Algorithm 20: Deferring reliable output in PARSEC dedup

function pipeline out(buf, len, fd)
// fd may be unreliable, so monitor progress of

writes
1 (p, nsent, rv)← (buf, 0, 0)
2 while nsent < len
3 rv ← write(fd, p, len− nsent)
4 if transient error(rv) then
5 continue

6 if fatal error(rv) then error
7 nsent← nsent+ rv
8 p← p+ rv

9 fsync(fd)
10 free(buf)

// Version with irrevocable transactions
1 synchronized

. . .
2 pipeline out(packet.buf, len)

. . .

// Version with atomic defer: packet is now deferrable
deferrable class packet

1 atomic
. . .

2 λ←()
3 pipeline out(packet.buf, len)

. . .
4 atomic defer(λ, packet)

to cause performance degradation, but the benchmark still scaled poorly. A sketch of the

code transformation appears in Algorithm 20. Since the buffer to be output was already

encapsulated in a struct (“packet”), we made that struct deferrable and ensured that its

fields were accessed through getters and setters. Deferring the operation was then a one-line

change, which preserved the ordering of fsync operations and error handling with respect

to output and subsequent concurrent accesses. The performance of dedup with this change

appears in Figure 4.3 (a), as “+DeferIO”.

We discovered that the Compress function was marked as pure, because it does not

access any shared memory. Marking the function pure indicates to the compiler that the

function can be run without instrumentation, lacks side effects, and can be run from a non-

irrevocable context even when the compiler cannot prove that irrevocability is not needed.

Compress is a long-running function, and in HTM, it accesses more memory than can be

tracked by the HTM; the HTM execution serializes whenever a call to Compress exceeds the

capacity of the hardware. In STM, the call to Compress represents a period of time during

which other transactions can commit, but will delay in their quiesce operations. While the

run-time behaviors are different, the consequence is the same: when one transaction calls

Compress, other transactions cannot make progress.

Since Compress is pure, it can be deferred. We encapsulated the compressed buffer

as a deferrable object, so that the run-time system can suspend transactions when they

attempt to access a buffer that is locked for deferred compression. This has a profound
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impact on both STM and HTM. In HTM, the transaction ceases to overflow hardware

capacity, and serialization is avoided. In STM, compression ceases to impede quiescence,

and concurrent threads can make forward progress. In Figure 4.3 (a), we see that the

“+DeferAll” curves for both HTM and STM now compete with pthread locks, representing

a 1.7x speedup for STM and 2.7x speedup for HTM.

Lastly, we measure the impact of atomic defer on the 36-core system, to see how per-

formance scales across chips and in the face of significantly more hardware parallelism. In

Figure 4.3 (b), the performance of the baseline HTM is not shown: the 32-thread STM

performance exceeds 270 seconds, and HTM never scales. When we employ atomic defer

to move output and pure functions out of transactions, both STM and HTM improve by

roughly 10x compared to their respective TM baselines, reaching the same performance as

pthread locks. While these optimizations require more careful reasoning about the pro-

gram, we contend that these optimizations are still easier than reasoning about fine-grained

locking.

4.6 Conclusions

In this chapter, we presented a technique for atomically deferring operations in memory

transactions. The key feature of our work is that concurrent transactions cannot detect

that an operation was deferred: the operation appears atomic with the corresponding trans-

action, which retains serializability. The fundamental technique to enable atomic deferral

is composing transactions with locks and retry-based condition synchronization, to facili-

tate a form of two-phase locking. With the deferred operation, transactions may perform

complex operations and access a subset of shared memory. Using atomic deferral allows

transactions to perform output without serializing, and was the foundation for a dramatic

improvement in the performance of the PARSEC dedup benchmark.

Atomic deferral requires more complex reasoning by programmers than irrevocability,

and is less general. However, when applicable, it eliminates serialization overheads, and

shortens the time that transactions spend quiescing. In our view, the additional program-

mer overhead to use atomic deferral is small, and more than justified by the benefits. For
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example, we presented a scenario where atomic deferral can avoid serialization when man-

aging file descriptor pools in MySQL, and another where files can be updated in order,

while obeying strong persistence requirements.
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Chapter 5

Supporting Data Persistence

This Chapter studies the performance of persistent transactional memory (PTM) algorithms

and introduces runtime optimizations and contention management for PTM under different

programming models. The work first was published in “Brief Announcement: Optimizing

Persistent Transactions” at the 31th ACM Symposium on Parallelism in Algorithms and

Architectures [130].

5.1 Introduction

In many ways, PTM resembles software transactional memory (STM), an approach to

creating high-performance concurrent programs. STM promised to simplify the creation of

scalable programs by raising the level of abstraction for programmers: instead of thinking

about explicit fine-grained locks, programmers could mark regions of code that required

atomicity, and then a run-time system would track the memory accesses of those regions to

maximize the number of transactions that could complete simultaneously without causing

data races.

STM promised high scalability with limited run-time latency. By and large, it did not

succeed. Single-thread latency was often 3× that of sequential code, and the programming

model for STM necessitated overheads within the STM implementation that prevented the

levels of scalability needed to justify its cost.

In this chapter, we show that PTM is not destined to face the same fate as STM.

96



www.manaraa.com

 0

 100

 200

 300

 400

 500

 600

 0  10  20  30  40  50

T
h

ro
u

g
h

p
u

t 
(K

tp
s
)

Number of Threads

Lock
STM

(a) TPCC-HashTable

 0

 100

 200

 300

 400

 500

 0  10  20  30  40  50

T
h

ro
u

g
h

p
u

t 
(K

tp
s
)

Number of Threads

p-lock-eager
p-lock-lazy

PTM

(b) TPCC-B+Tree

Figure 5.1: Transactional TPCC benchmark performance. When the program data is in
DRAM, synchronization is achieved using a single coarse lock or transactions. When the
program data is in NVM, synchronization is achieved using a coarse lock + undo (eager),
a coarse lock + redo (lazy), or persistent transactional memory.

Consider the experiments in Figure 5.1, which show the scalability of the TPCC “new

order” benchmark when the underlying data store is represented as a hash table or a B+

tree. Every access to shared memory occurs within a language-level transaction, and all

program data is in a contiguous segment of RAM. When we use a global mutex (“lock”) to

implement transactions, single-thread throughput is 2× to 3× that of STM. STM requires

4–8 threads to match the throughput of the lock-based code, and at its peak, has only 2×

the throughput.

We can make the lock-based system persistent by either deferring all updates of memory

to the end of each critical section (p-lock-lazy), or by updating an undo log prior to each

write to the NVM within the critical section (p-lock-eager). These systems also require

explicit flushing of data from the cache to memory, and explicit memory fences. The eager

approach is almost 10× slower than the non-persistent case, and the lazy approach is 2×

slower. Neither scales. In contrast, by applying the techniques discussed in this chapter,

persistent transactional memory (PTM) is able to achieve 90% of the performance of the

persistent lock-based code, and scale to 5× its throughput.

The experiment suggests that the promise of PTM is far greater than that of STM.

There are two reasons. First, the fundamental overheads of persistence, such as flushing

and fencing, mask the instrumentation overheads of a well-designed PTM. Second, the

PTM programming model is fundamentally different than the STM programming model,
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affording new optimizations that can reduce latency and improve scalability.

In this chapter, we study the relationship between PTM and STM. We introduce a

universal transformation from STM to PTM, characterize fundamental overheads associated

with different programming models for PTM, and present optimizations for PTM within

these programming models. In particular:

• We show that PTM can be faster than STM, and more scalable, for realistic workloads.

• We explain why the conventional wisdom about what makes a “good” STM algorithm

does not always apply to PTM.

• We show that PTM cannot use STM techniques to ensure progress, and we show how

to easily ensure progress for PTM.

• We demonstrate the importance of the persistence model on the performance of PTM

algorithms.

• We introduce run-time optimizations specific to PTM, which raise performance by as

much as 60%.

The remainder of this chapter is organized as follows. In Section 5.2, we introduce two

system models for persistent transactions. Both take into account modern hardware trends,

but one is more restrictive, constraining transactions to exclusively access NVM or DRAM,

but not both. Then, in Section 5.3, we present a general transformation for turning an

arbitrary STM algorithm into a PTM algorithm. We also present baseline performance

numbers for PTM versus STM. Section 5.4 presents a set of optimizations, some of which

are only applicable to the more restricted model, others of which apply to both models. We

also measure the impact of each optimization, in isolation. Then, in Section 5.5, we measure

the impact of combining optimizations. Finally, Section 5.6 summarizes our conclusions.

5.2 System Model for Persistence

The fundamental challenge for PTM is to ensure that program data is in a recoverable

state at all times. That is, if the system should encounter a failure, then after the failure
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is addressed and the system restarted, the program’s data should not be invalid. At a

high level, a transactional model ensures this property by executing atomic transactions

that appear to happen all at once or not at all. However, the implementation of persistent

transactions depends on the following factors:

5.2.1 Hardware Support for Persistence

Marathe et al. [77] describe three hardware persistence domains. The simplest (persistence

domain 0, or PDOM-0) only contains the NVM RAM modules themselves. PDOM-1 adds

the memory controller. PDOM-2 adds the entire CPU state, including caches and registers.

As the persistence domain expands, it becomes easier to ensure a recoverable state. For

example, if a power failure occurs for a PDOM-2 system, then when the machine is powered

back, it can resume immediately, with no loss of data. In PDOM-1, memory buffers are

flushed to DIMMs on power failure. As a result, programmers must ensure that data reaches

the buffers in a correct order, through the use of clwb instructions that cause a cache line to

write back, and sfence instructions to order the a clwb with respect to subsequent stores.

Finally, in PDOM-0, only the DIMMs are persistent, leading to additional instructions (e.g.,

pcommit) that run after all clwbs, to move data from the memory controller to the DIMMs.

Current and upcoming Intel systems provide PDOM-1, and instructions related to

PDOM-0 have been deprecated [58]. In Intel’s PDOM-1 systems, a failure that occurs

in the middle of a transaction requires care to recover correctly: when the system recov-

ers, the program counters at the time of the failure are unknown. As a result, persistent

transactions must either (a) use undo logs to record all overwritten values, so that they can

roll back a transaction that is interrupted, or (b) use redo logs to record all to-be-updated

values, so that they can roll forward a transaction after it is guaranteed to complete. The

contents of either log must be stored in persistent memory, and updates require specific or-

dering with respect to accesses to program data. As a result, any transaction, even one that

is not concurrent, requires instrumentation on every load and store of persistent memory.
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benchmark TPCC-B+Tree TATP TATP (1Kops/tx)

overhead 5.15% 2.67% 5.1%

Table 5.1: Overhead of self-referential pointers

5.2.2 Position-Independence

Typically, a persistent region is achieved by mapping a named, contiguous range of physical

addresses in NVM into a program’s virtual address space via mmap [17]. When a program

restarts and reloads such a region, its virtual-to-physical mappings may change. The sys-

tem may require that a data structure stored in NVM use position-independent pointers.

These can either consist of two machine words (to represent a file ID and offset within the

file) [59] or a single machine word that represents an offset relative to the location of the

pointer (e.g., for a pointer at 0xAA00 to refer to a word at 0xAAF0, it would store the value

0xF0). Position-independence simplifies recovery: when a program re-starts, it can load the

persistent region and use it immediately. Without position independence, it is necessary to

walk the entire persistent region and re-write pointers. Note that rapid recovery requires

position independent pointers and also a persistent allocator.

Table 5.1 depicts the increase in latency that position-independent pointers introduce

in a non-persistent program. The experiment was conducted by using our transactional in-

strumentation (discussed in Section 5.3) to dynamically treat each pointer in the benchmark

as a self-referential pointer. As such, this experiment is a low estimate of the true cost of

position independence, as it does not consider the additional clwb and sfence instructions

that a persistent allocator would introduce. When we consider that persistent regions are

rarely loaded, this cost seems excessive, and thus we focus on non-position-independent

pointers.

5.2.3 Hardware Memory Diversity

In systems with NVM RAM, it is also possible to have traditional DRAM. One example

is Intel Apache Pass. In these systems, a fundamental question is whether a persistent

transaction is allowed to read and write to the DRAM, or only the persistent RAM. It may

be difficult to statically enforce a requirement that transactions operate exclusively on one
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type of memory or the other. The distinction is important, because a persistent memory

region is typically allocated with mmap, and deallocated with munmap. An allocator that

runs within the region may create and reclaim ranges of memory within the region, but it

cannot return portions of the region to the operating system. In contrast, allocators for

DRAM can return individual pages of virtual memory to the operating system when they

are no longer in use.

STM literature establishes that when transactions are able to execute speculatively,

then a transaction that frees memory cannot simply defer the call to free until after the

transaction commits: freeing might return a page to the operating system, and a concurrent

transaction (which is destined to abort) may be in the process of accessing a location on that

page. If the freeing thread does not wait for all concurrent transactions to reach a safe point,

or epoch, then those threads may incur a segmentation fault. This behavior is a subset of a

larger pattern called privatization. A PTM that allows transactions to access DRAM and

NVM must incur small privatization overheads at the boundaries of every transaction (and

optionally also whenever an in-flight transaction checks the consistency of its read set). It

must also incur large overheads when committing a transaction that privatizes memory.

Privatization patterns are sufficiently complex that the default is for every transaction to

incur this overhead whenever it commits.

5.2.4 Static Separation

When transactions are used for concurrency, there is no need to instrument every access

to DRAM; only accesses that could be concurrent with a transactional access to the same

location need to be instrumented. In legacy systems, this may mean that on a single

cache line, one byte may be private to a thread, while an adjacent byte is shared among

many threads, and accessed via transactions. In contrast, our focus on PDOM-1 means

that every store to the NVM must be instrumented, so that clwb and sfence instructions

can be performed correctly. It is natural, then, to require that every store be part of a

transaction.

Going a step further, we can require that every load from a persistent region is also

part of a transaction (note that micro-transactions make the overhead of such a design
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minimal [33]). The resulting “static separation” model [1] is able to track memory at a

coarser granularity than permitted by transactional programming models for DRAM [122].

5.2.5 Multiple Persistent Regions

Applications should be able to work with multiple persistent regions at the same time.

However, past work has established that some constraints may be enforced, such as for-

bidding pointers from NVM-backed regions to DRAM, or between NVM regions [17]. For

the purposes of this Chapter, the distinction is not significant: as long as every attempt to

mmap a named persistent region is done in a manner that persistently tracks (a) the name of

the region (e.g., file name), (b) the virtual address assigned to the first byte of the mapped

region, and (c) the size of the mapped region, then management of cross-region pointers

can be handled by the code that runs upon recovery after a failure.

5.2.6 Models Considered in this Chapter

From the above, we focus on two models. In both models, the underlying hardware is

assumed to provide PDOM-1, and the programmer is expected to provide recovery code,

so that persistent regions do not require position independent pointers. Note that during

recovery, it will be necessary to both (a) apply a redo/undo log and (b) remap pointers

within the persistent region. Upon this base, the general persistence model (GP) assumes

that main memory consists of both NVM and DRAM, that any single transaction may

access both kinds of memory, and that it programs may access memory (reads and writes

of DRAM, reads of NVM) from outside of transactions. The ideal persistence model (IP)

assumes that a transaction may only access one type of memory (NVM or DRAM), and

that every access to NVM is performed from within a transaction.

5.3 Universal Persistent TM Transformation

STM algorithms typically contain five functions, which interact with program addresses and

STM metadata:
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• Begin: Starts a transaction by snapshotting the thread’s architectural state and pos-

sibly reading some global metadata.

• Write(a, v): Attempt to write the value v to address a. Write may directly modify

the value at address a, or might store the v in a private buffer, to “redo” at a later time.

It may also cause a transaction to validate (i.e., make sure no concurrent transaction

made changes to a location the current transaction has already accessed).

• Read(a): Attempt to read and return the value at a. Like Write, Read may cause a

validation. To ensure processor consistency, it may need to check if a is in the redo

log managed by Write.

• Commit: Finishes a transaction by finalizing the writes only if the reads all remain

valid.

• Abort: Rolls back any writes, clears all thread-local metadata, and restores the check-

point from Begin to re-try the transaction.

The most general STM algorithms rely on global metadata through which transac-

tions can lock locations before modifying them. These locks may be explicit readers/writer

locks [29], or ownership records (orecs) [28] that superimpose a lock bit on a version number,

so that optimistic readers can avoid acquiring read locks, instead validating the consistency

of reads by tracking changes in the versions of the orecs protecting locations they read. In

some cases, program values [24,92] or bit vectors [111] are used instead of orecs.

The general read strategy for STM is similar regardless of the metadata: a transaction

checks global metadata, reads a location, and possibly checks the metadata again. If the

metadata is unchanged and compatible with previous reads, the new value can be returned

(and the read set updated to include the new address). Otherwise, the transaction aborts.

To write, a transaction either places an address/value pair into a write set (lazy), or locks

the location, logs the old value in an undo log, and updates the value directly (eager). With

lazy writes, it is necessary for reads to check the log, or else they may violate processor

consistency by failing to see values previously written by the same thread in the same trans-

action. To commit, a lazy transaction acquires locks for all its writes, validates its reads,

103



www.manaraa.com

replays its redo log to update program memory, and releases locks. An eager transaction

merely validates and releases locks. Conversely, to abort, a lazy transaction merely resets

its local lists, whereas an eager transaction must use its undo logs to restore the values of

locations it wrote, then releases locks.

5.3.1 Ensuring Correctness for Common-Case Transactions

Algorithm 21 presents the generic behavior of lazy and eager STM algorithms, and extends

them to make them correct when operating on persistent regions. The comment algorithm

specific indicates that the next lines of code would vary depending on the STM algorithm,

but are immaterial to the persistent transformation. These algorithms treat all memory as

persistent, issuing clwb and sfence instructions even when interacting with DRAM. To do

so is inefficient, but correct, and simplifies the discussion in the remainder of this section.

In the GP model, the entirety of the effort in making a lazy transaction persistent

occurs in the Commit function. At line 6, the transaction has acquired all of its locks and

ensured the validity of its reads. Additionally its redo log is stored in persistent memory. In

traditional STM, the transaction would write back its redo log (line 10) and then clean up.

In PTM, the transaction must first ensure that its entire redo log has reached a persistent

level of the memory hierarchy. Line 6 performs up to W clwb instructions, where W is the

number of entries in the redo log, to flush the entries to the persistent storage. It then sets

the transaction’s state to active (line 8). Prior to line 8, if the system crashed, then on

recovery, the redo log would be discarded, and it would be as if the transaction never ran.

After line 8, if the program crashed, the recovery procedure would see that s was active

for this thread, and hence its redo log would need write-back.

On line 10, the redo log is replayed to memory. Note that this is an idempotent operation.

If it were interrupted by a crash, then on recovery, it could be re-done (though potentially

with re-mapped addresses, depending on the new base virtual address of the persistent

region). Since write-back is idempotent, it does not matter if recovery leads to it executing

more than once, but every write-back must reach persistent memory (via up to W clwb

instructions on line 10). Once line 12 is reached, it is known that the write-back was

successful, and need not be done again. After that, the thread can release its locks and
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Algorithm 21: Universal transformation from STM to PTM
Thread-local Variables (Located in NVM):
rl : redo log for lazy algorithms, initially empty
ul : undo log for eager algorithms, initially empty
s : status of current transaction: {active, inactive}

function Begin.Lazy()

// algorithm specific:
1 StartTransaction ()

function Commit.Lazy()

2 if rl.empty then
// algorithm specific:

3 ResetMetadata ()
4 return

// algorithm specific:
5 AcquireLocksAndValidate (rl)

// changes for NVM:
6 clwb(rl)
7 sfence
8 clwb(s← active)
9 sfence

10 clwb(rl.writeBack())
11 sfence
12 clwb(s← inactive)
13 sfence

// algorithm specific:
14 ResetMetadata ()

function Read.Lazy(addr)
// Check redo log:

15 if addr ∈ rl then
16 return rl.get(addr)

// algorithm-specific:
17 val←ConsistentRead (addr)

// abort on error, else return
val:

18 if err then Abort.Lazy ()
19 return val

function Write.Lazy(addr, val)
// Save addr/val to redo log:

20 rl.insert(addr, val)

function Abort.Lazy()

// algorithm specific:
21 ResetMetadata ()

function Begin.Eager()

// algorithm specific:
22 StartTransaction ()

// changes for NVM:
23 clwb(s← active)
24 sfence

function Commit.Eager()

25 if ul.empty then
// algorithm specific:

26 ResetMetadata ()
27 return

// changes for NVM
28 sfence
29 clwb(s← inactive)
30 sfence

// algorithm specific:
31 ResetMetadata ()

function Read.Eager(addr)
// Fast path if owned

32 if ThisTxOwns (addr) then
33 return ∗addr

// algorithm specific:
34 val←ConsistentRead (addr)

// abort on error, else return
val:

35 if err then Abort.Lazy ()
36 return val

function Write.Eager(addr, val)
// Get permission to update
addr

37 GetOwnershipOf (addr)
// changes for NVM

38 clwb(ul.insert(addr, ∗addr))
39 sfence

// update memory
40 clwb(∗addr ← val)

function Abort.Eager()

// changes for NVM
41 clwb(ul.writeBack())
42 sfence
43 clwb(s← inactive)
44 sfence

// algorithm specific:
45 ResetMetadata ()

clean up (line 13).

The eager algorithm is more complex. The main issue is that an undo (also idempotent)

will be triggered by any system failure between the first write by a transaction and the

point where it is known to have succeeded. We approximate this space by marking the

transaction active on line 23, prior to its first read or write. As with the lazy algorithm,

there are no changes to the read code. However, before writing, a transaction must log

the old value to the undo log, and persist the change (lines 38–39). In addition, aborting

is more complex, since it must restore memory, and that restoration must reach the NVM

before the transaction marks itself as inactive.

For a successful transaction, both eager and lazy will incur 2W + 2 clwb operations,
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to ensure that the redo or undo log is persisted, that all writes to program memory are

persisted, and to persist two toggles of the transaction’s state. The key difference is in

fences: the lazy algorithm has 4, whereas the eager algorithm has W + 3 fences.

5.3.2 Ensuring Progress and Instrumentation

A simple and easy strategy for ensuring the progress of DRAM transactions is through

the use of irrevocability [118]. The most common irrevocability mechanism is to use a

form of readers/writer locking, in which transactions acquire read permission before start-

ing/restarting, and release it upon commit/abort. A transaction that acquires the lock in

write mode is guaranteed to run without any active concurrent transactions.

Transactional compilers will make a transaction irrevocable if it attempts to do some-

thing that cannot be undone (e.g., an I/O system call). The rationale is that irrevocable

transactions cannot abort, and hence the call will thus be safe. These compilers also op-

timize irrevocable transactions: since they are running without concurrency, they do not

need any instrumentation on reads or writes, nor do they need undo and redo logging.

Once a transactional compiler and STM library support irrevocability, it also provides a

simple tool for ensuring progress: a transaction with more than k consecutive aborts, for

some threshold k, can become irrevocable. Without concurrency or instrumentation, the

transaction can then finish as quickly as possible.

Irrevocability is unsuitable for PTM, because a fault during an irrevocable transaction

cannot be recovered: the transaction’s writes are not reflected in an undo log, and any

irrevocable operation, like a system call, may not be reversible. To transform an STM

into a PTM, the irrevocability code must be removed, and a transaction that requires

irrevocability due to system calls must be rewritten.

Without irrevocability, we require a new mechanism to guarantee progress. We use the

“hourglass” scheduler [72]. The key idea behind the hourglass is to reduce contention, but

in a less rigid way than irrevocability. Let hg be an atomic boolean variable. A thread with

more than k consecutive aborts can try to transition hg from false to true. If it succeeds,

it is said to own the hourglass. When the thread’s next transaction commits, it sets hg

back to false.
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Figure 5.2: Performance comparison of STM to naive PTM (general model).

The nuance in the hourglass comes from its use in the begin function. After line 1 (or

line 22), the thread that owns the hourglass proceeds immediately to the next line. If a

thread does not own the hourglass, it spins until the hourglass is false, then proceeds.

The hourglass is simpler and more concurrent than irrevocability. With irrevocability, a

distressed transaction waits on concurrent transactions to finish, so that it will never abort

again; with the hourglass, a distressed transaction may abort after owning the hourglass.

However, as other threads complete their transactions, they will become unable to start

new transactions until after the distressed transaction completes.

Since correctness is not compromised if the distressed transaction (which is still instru-

mented) runs concurrently with other transactions, the check of hg in the begin function

does not require memory fences or readers/writer locking. This makes it more scalable than
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irrevocability in the common case, and incurs less latency.

5.3.3 Performance of Naive PTM and STM

Figure 5.2 presents the performance of a variety of STM algorithms and their PTM equiv-

alents across a set of common persistence benchmarks.

We compare seven STM algorithms. “Lock” refers to a lightweight, non-concurrent STM

implementation where all transactions are protected by a single global lock. “Orec-eager”

refers to a STM that uses ownership records and undo logging, similar to that used by GCC

TM [39]. “Orec-lazy” is identical to “orec-eager”, except it acquires locks at commit time

and uses redo logging [28,108]. “Orec-mixed” uses redo logging, but still acquires locks early,

like orec-eager [116]. Orec-mixed has less overhead than orec-lazy on lines 15–16, because

it can use knowledge of the locations it has locked to reduce the incidence of lookups in

the redo log. However, for workloads with high contention, it is likely to scale worse than

orec-lazy. “NOrec” [24] is a lazy algorithm that does not use orecs, instead relying on

a single sequence lock to order transaction commits, and storing the values it reads so

that it can validate address/value pairs, instead of orec version numbers. “TLRW” [29]

is an eager algorithm with carefully-crafted readers/writer locks. “Ring” [111] is a lazy

algorithm that uses a log of 1024-entry bit vectors to capture the history of committed writer

transactions. Readers can validate by intersecting their for fast but imprecise validation of

active transactions against newly committed transactions. The persistent versions of the

above algorithms are indicated by the “p” prefix. They were created via transformation

in Listing 21. The exception is “Lock”. We created two versions of “Lock”, one eager,

one lazy. These implementations bridge the gap between STM and past work on persistent

critical sections [16]. Excluding “lock” algorithms, all STM and PTM algorithms use our

hourglass scheduler to ensure progress.

We instrumented code using an open-source LLVM extension for STM [123], and we

integrated the 7 STM and 8 PTM algorithms into it. This allowed us to isolate differences

among STM algorithms, e.g., by using the same redo and undo log implementations. For the

“p-lock-eager” PTM, we created a custom version of the extension that did not instrument

reads. We also employed Link Time Optimization (LTO) to eliminate function call overhead
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related to instrumentation.

All experiments were conducted on a Dell PowerEdge R640 with two 2.1GHz Intel Xeon

Platinum 8160 processors and 192GB of RAM. Each processor has 24 cores / 48 threads,

runs Red Hat Linux server 7.4, and LLVM/Clang 6.0 with O3 optimization. Experiments

are the average of five trials; to avoid NUMA effects, we limited execution to a single CPU

socket. Note that on this system, the RAM is not persistent, but clwb incurs accurate

latencies.

We consider every open-source multi-threaded PTM benchmark we could find, which

includes (i) one real world application, Memcached [80]; (ii) write-only benchmarks from

DudeTM [69]: the TPCC transaction processing benchmark, TATP telecom application

benchmark, and a B+ tree data structure microbenchmark; (iii) the “vacation” travel reser-

vation benchmark [85, 87]. We tested the B+ tree for an insert-only workload, as well as a

workload with an even mix of lookup, insert, range query, and remove operations. We ran

two TPCC benchmarks, one using a B+ tree as the index, the other using a hashtable; both

were the New Order workload. We tested Update Location transactions for TATP, using a

hashtable for the index. We also looked at the recommended “high” and “low” contention

settings for vacation. We evaluated Memcached by assigning 8 threads in one NUMA zone

to serve as clients, and then varying from 1 to 48 worker threads in a second NUMA zone.

For the memcached experiments, we used a get/set ratio of 90/10.

The most striking finding of this experiment is that supporting persistence seems to

tip the balance in favor of lazy strategies. We shall see in subsequent sections that this

observation is mitigated, to a degree, by algorithm-specific optimizations for eager PTM.

While the performance of orec-lazy and orec-eager are competitive with each other across

all benchmarks, the linear number of sfence instructions hurts the performance of p-orec-

eager. The eager TLRW is consistently among the best in Figure 5.2(c)(f)(g)(h), as is

the persistent version. The success of persistent TLRW is due to our optimizations, which

carefully order the explicit readers/writer locking in TLRW to avoid additional sfences for

persistence. Another reason is TLRW’s unique, scalable approach to privatization safety:

Other algorithms incur privatization costs that grow with the number of threads.

Another surprise was the poor performance of NOrec. Support for persistence can
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increase the time that transactions spend holding locks. NOrec is more sensitive to this

overhead than the other STM algorithms we consider. NOrec is lauded for its ability

to provide a simple, scalable fallback when hardware TM cannot succeed [22, 78]. The

clwb instruction is incompatible with hardware TM. Without the promise of a hardware-

accelerated future, p-norec does not appear viable.

For orec-mixed, which was implemented in Mnemosyne [116], we see that the optimiza-

tion for reducing lookups in the redo log has little benefit: it has a scalability cost, due to

early locking, and does not save much read lookup latency.

The last algorithm we considered was RingSTM. Like NOrec, RingSTM is a scalable

lazy STM. RingSTM is less precise in its conflict detection than any of the other algorithms

we consider, potentially leading to more aborts. However, it provides a feature that NOrec

lacks: like the orec-based algorithms and TLRW, it can overlap the write-back of multiple

software transactions. Unfortunately, naively transforming RingSTM to support persistence

does not result in good performance.

5.4 PTM Optimizations

5.4.1 Captured Memory

From the earliest days of STM research, systems avoided instrumentation for accesses to

memory on stack frames whose lifetime was limited by the scope of the transaction. In

addition, Riegel et al. [98] and Dragojevic et al. [35] developed techniques for avoiding

instrumentation of “captured memory”, that is, locations that could be statically shown to

be accessible only to the thread running the transaction. In some cases, captured memory

would still require lightweight undo logging, e.g., for accesses to portions of the stack that

were not transaction-local. While effective, captured memory optimizations are not part

of modern STM implementations, due to the pointer analysis needed before any significant

gains are achieved.

For NVM transactions, an important subset of captured memory is the memory allocated

to a transaction during its execution. In our workloads, a transaction that allocates memory

(e.g., calls malloc) is guaranteed to write to that memory. Thus it needs some amount
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TPCC-HashTable TPCC-B+Tree B+Tree (Insert)

p-lock-eager 1.674 1.543 1.235
p-lock-lazy 1.055 1.045 1.041

p-orec-eager 1.674 1.443 1.126
p-orec-lazy 1.115 1.101 1.048

p-norec 1.107 1.081 1.061
p-ring 1.068 1.093 1.011
p-tlrw 1.626 1.358 1.127

p-orec-mixed 1.118 1.125 1.088

Vacation (low) Vacation (high) Memcached

p-lock-eager 1.190 1.139 1.01
p-lock-lazy 1.026 1.021 1.01

p-orec-eager 1.179 1.177 1.272
p-orec-lazy 1.067 1.069 1.12

p-norec 1.052 1.024 0.999
p-ring 1.003 1.092 1.031
p-tlrw 1.173 1.162 1.264

p-orec-mixed 1.099 1.058 1.026

Table 5.2: Speedup from the last allocation tracking optimization (single-thread).

of instrumentation (at least a clwb of each cache line written). A lightweight, dynamic

optimization for these allocations can have a significant impact on latency. We call this

optimization “last allocation tracking.”

A typical STM will log the result of every malloc called within a transaction, so that

it can free those pointers if the transaction aborts. To support last allocation tracking,

we instead store a tuple, consisting of the returned value and also the size of the allocated

region. We then make the following two modifications to the PTM implementation. First,

on any Read or Write, we check if the address begin accessed is within the range of the

most recent allocation. If so, we do not perform any further instrumentation, instead

performing the read or write directly to memory. This results in an additional branch

before lines 15 and 20 for the lazy algorithm in Listing 21, and before lines 32 and 37 of the

eager algorithm. Second, at commit time, prior to line 7 of the lazy algorithm or line 29 of

the eager algorithm, we loop through the list of allocations. For each, we iterate through

its range, and clwb once per cache line. In this manner, we ensure that all writes to the

new memory region have crossed the persistence domain before marking the transaction as

complete. For completeness, note that these steps must also be performed in the read-only
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TPCC-HashTable TPCC-B+Tree TATP B+Tree (Insert)

p-lock-eager 1.229 1.519 1.049 1.366
p-lock-lazy 1.086 1.227 1.296 1.226

p-orec-eager 1.185 1.464 1.224 1.406
p-orec-lazy 1.041 1.124 1.084 1.113

p-norec 0.423 0.315 0.905 0.750
p-ring 1.022 1.121 1.107 1.158
p-tlrw 1.251 1.347 1.116 1.357

p-orec-mixed 1.088 1.113 1.052 1.063

Vacation (low) Vacation (high) Memcached

p-lock-eager 1.231 1.197 1.11
p-lock-lazy 1.218 1.205 1.03

p-orec-eager 1.185 1.196 1.16
p-orec-lazy 1.104 1.120 1.114

p-norec 0.651 0.567 1.02
p-ring 1.076 1.058 1.022
p-tlrw 1.155 1.177 1.139

p-orec-mixed 1.144 1.097 1.055

Table 5.3: Speedup of aligned memory and coarse-grained logging for single thread execution

fast path of the commit operations, in case a transaction’s only writes are to a region it

allocated.

Last allocation tracking affects latency, but not scalability. To evaluate its effectiveness,

Table 5.2 presents its impact on single-threaded execution of our benchmarks. In the “lock-

eager” algorithm, where reads are not instrumented, the impact should be least; however,

it is a startling 13% or higher. This is due to the reduction in sfence instructions that

the technique achieves for eager algorithms. Indeed, p-orec-eager and p-tlrw also show

substantial improvement. The benefits for lazy algorithms are more limited (4% to 12%),

and more in line with the gains to be expected from captured memory instrumentation

in STM. We conclude that last allocation tracking is a generally effective strategy, and

particularly effective for eager PTM.

5.4.2 Memory Alignment and Logging Granularity

Both the GP and IP models assume that addresses in the NVM will only be accessed via

transactions. Since persistent memory is given to the program at the granularity of pages,

the models both permit for a coarser granularity of management than in STM.
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In STM, when a transaction accesses the byte at address A, it cannot eagerly read

adjacent bytes, even if those addresses are protected by the same metadata (e.g., the same

orec). The problem is that adjacent addresses may be accessed by a concurrent, non-

transactional thread. With undo logs, this means that the entries in the log must have

variable granularity. With redo logs, a system must either (a) log at the granularity of

individual bytes, or (b) accompany each coarse log entry with a bitmap to indicate which

bytes of the entry should be written back. In addition, when ensuring processor consistency

during reads (lines 15–16), the bitmap dictates which bytes of an entry should affect the

return value of the read. In a general-purpose STM implementation that supports C++

casting and mixed-granularity access, the lookup in Listing 21 may need to use the bitmap

to compose bytes from the redo log with bytes that would be read on line 17.

Composing logging granularity with memory alignment creates a new opportunity to

improve PTM performance. We dynamically replace each malloc of NVM with a call to

aligned malloc, and we align on a boundary that is determined by the underlying STM

(e.g., to match orec granularity). We then log at that same granularity. For undo logging,

this means we can log at a fixed granularity (we chose half a cache line, 32 bytes); the log

then holds 〈address, value〉 tuples, instead of 〈address, value, length〉. For redo logging,

the redo log no longer needs a bitmap, and redo log entries always are populated with a

full 32 bytes of program data read from NVM. As discussed above, Read is also simplified,

leading to fewer instructions and fewer branches on each read.

Our decision to use 32-byte granularity was based on balancing improvements in per-

formance (especially for TPCC and Vacation) against the increased potential for conflicts

due to false sharing and the potential for unnecessary logging due to poor spatial locality

(especially in the B+ Tree and TATP). In separate experiments, we found that 16-byte

granularity improved performance for the B+ Tree, and 64-byte granularity was best for

TPCC. We opted to show a single consistent granularity, and we recommend developers

to think more carefully about granularity, so that it can be a tunable parameter in future

systems.

Table 5.3 presents the impact of this optimization for single-threaded code. Note that

while the optimization has the potential to harm scalability, if threads concurrently access
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TPCC-HashTable TPCC-B+Tree B+Tree (Insert) B+Tree (Mix)

Speedup 13.3% 14.2% 10.91% 2.5%

Vacation (low) Vacation (high) Memcached

Speedup 2.85% 4.05% 9.07%

Table 5.4: Speedup of fence pipelining for TLRW on single thread execution

the same cache line, such problems do not manifest in our benchmarks, which exhibit good

spatial locality and are free from false sharing.

The impact of the optimization varies by workload and PTM algorithm. While it is

generally effective, it performs poorly for NOrec. NOrec differs from the other algorithms

in this study, in that it does not use program metadata to detect conflicts among threads.

Instead, it logs the locations that were read, and the values observed at those locations.

Coarsening the redo log granularity leads to a coarsening of the read log, which means that

any read must log 32 bytes. This increased write pressure during reads translates to worse

performance for NOrec, while the other PTM algorithms enjoy speedups of 2% to 46%.

Note that in the GP model, exploiting this optimization requires the transaction to

maintain two redo logs: one for NVM addresses, with coarse granularity, and one for DRAM

addresses, with STM granularity.

5.4.3 Fence Pipelining

Eager PTM algorithms incur a penalty due to the need to flush undo log entries before

writing new values to the NVM. WithW writes, the addition ofW sfences has a deleterious

effect on single-thread latency, even in lock-eager.

Among eager STM algorithms, TLRW is unique in that every memory access, whether

read or write, must acquire a lock. These acquisition operations cause the same type of

ordering as is needed for undo logging. That is, in TLRW, line 34 has a memory fence,

as does line 37. However, the fence on line 37 must precede the clwb on line 38, as it is

necessary before dereferencing addr.

While we cannot combine two fences within the same Write call, we can coalesce the

sfence on line 39 with a subsequent fence in the next call to Read or Write. Our TLRW

“pipeline” optimization defers the write and clwb on line 40, by storing the address and
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TPCC-HashTable TATP B+Tree (Insert)

Threads 4 8 24 4 8 24 4 8 24

p-lock-lazy 1.199 1.003 1.258 1.317 1.392 2.791 1.069 1.643 1.056
p-orec-lazy 1.026 1.052 1.007 1.018 1.056 1.050 1.010 0.998 1.008

p-norec 1.108 1.167 1.147 1.301 1.245 1.229 1.086 1.141 1.169
p-ring 1.041 1.028 1.130 1.152 1.211 1.457 1.085 1.145 1.152

p-orec-mixed 0.998 1.003 1.012 0.979 1.002 1.034 1.002 1.017 1.047

Vacation (low) Memcached

Threads 4 8 24 4 8 24

p-lock-lazy 1.035 1.032 1.085 1.005 1.33 1.354
p-orec-lazy 1.012 1.017 0.998 1.057 1.368 1.485

p-norec 1.061 1.087 1.100 0.992 1.256 1.272
p-ring 1.027 1.014 1.017 1.111 1.184 1.631

p-orec-mixed 0.971 0.980 0.991 1.201 1.271 1.321

Table 5.5: Speedup of Deferred Flushing

value to a thread-local variable. It also omits the fence on line 39. Then, on the next

Read or Write, after line 34 or line 37, we execute the deferred store and clwb. We also

execute the deferred store immediately before line 33, and immediately before line 29. In

this manner, the most recent write to NVM delays until the transaction performs its next

operation that requires a memory fence, allowing the fences to be combined. As a result,

persistent TLRW is able to reduce its fencing overhead to the same as the original TLRW

algorithm.

Table 5.4 shows the impact on single-thread latency for TLRW when using this opti-

mization. Across our benchmarks, the optimization reaches 14% speedup in the best case,

and never reduces performance.

5.4.4 Deferred Flushing

Our naive transformation from STM to PTM prolongs the time spent holding locks: all

clwb operations are performed while locks are held. In Listing 21, there are four rounds of

interaction with the NVM while locks are held. The benefit of this strategy is simplified

recovery: if two transactions both write to X, and there is a system failure during one of

the transactions execution of line 10, then the other thread is either (a) not yet to line 5, or

(b) past line 13. As a result, recovery never needs to worry about ordering the outstanding

write-backs of two completed transactions.
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In our deferred flushing optimization, we replace the active status word with an integer

timestamp representing the transaction’s commit order (0 means inactive). Then, we split

line 10, such that the write-back occurs without clwbs. After write-back completes, we

release locks (part of line 13), then we issue the clwbs, then clear the status, and then

run the rest of line 13. In this manner, flushing new values to the persistence domain is

done without holding locks. Note that if a thread delays before issuing its clwb of location

L, then some other thread may lock L, update it, and flush its update. In this case, the

delayed clwb will flush the new value.

Essential to the above optimization is the ability to produce a correct total order on

writer transaction commits. In all but the TLRW algorithm, some global counter, or single

global lock, is used to order all writers. We use it as the timestamp value. In TLRW, we

use the CPU’s high-resolution timestamp counter (rdtscp), which is coherent across cores

on the x86.

Table 5.5 depicts the performance improvement from this optimization. The effect is

most pronounced for TATP, which is dominated by small transactions. In TATP, at 24

threads performance is more than 2.7× the unoptimized 24-thread throughput. For some

workloads, we observe a small slowdown (up to 3%), due to the shorter critical sections

leading to transactions committing in different orders. However, the overall impact is posi-

tive.

5.5 Combining Optimizations

We conclude our evaluation by measuring the impact of optimizations, in combination, for

each benchmark. We are particularly focused on understanding the implications of the

programming model on performance.

Recall that in the general (GP) model, a single transaction might access both NVM

and DRAM. In such a scenario, the cost of determining the nature of an address may

be expensive: if N persistent heaps are mapped into the program’s address space, then

determining if an address A is in NVM could require N base/bound checks. To approximate

the worst case, our GP implementations of PTM omit optimizations that are inappropriate
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Figure 5.3: Optimized performance of PTM algorithms. The GP prefix indicates that
the PTM uses the optimizations that are appropriate in the General Persistence model.
IP indicates that additional optimizations were applied, based on the more limited Ideal
Persistence model.

for DRAM transactions. Since every GP transaction might access DRAM, we also keep

privatization overheads (e.g., quiescence) in place. In contrast, PTM algorithms in the

IP model follow prior work [20, 116] in requiring quiescence when unmapping a persistent

region, so that individual transactions do not need to quiesce.

In summary, this leads to the following configurations. For the GP model, we use

the hourglass scheduler, last allocation tracking, fence pipelining (in TLRW), and deferred

flushing. For the IP model, we add 32-byte logging granularity for redo and undo logs, and

we remove quiescence. Note that the “tlrw” algorithm does not require quiescence.
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5.5.1 Performance in the General Persistence Model

In Figure 5.3, algorithms optimized for the GP model are prefixed with gp. After applying

the optimizations, the overall performance for each algorithm improves, often by a sub-

stantial margin. The peak performance speedup of the best choice, when comparing with

the naive transformation from STM to PTM (from Figure 5.2), is from 1.1× (b) to 1.3×

(i), with a geometric mean of 1.22× across all benchmarks. If it were possible to pick the

best PTM algorithm at run time, based on advance knowledge of the workload, thread

count, and other program characteristics, we might expect this performance. Note that the

decision may not be difficult, since either gp-orec-lazy or gp-tlrw is near the top in every

workload. Indeed, if only one algorithm could be used for all programs, gp-orec-lazy appears

to provide the best overall performance.

In assessing the improvements to other PTM algorithms, we see that fence pipelining had

a significant effect on eager TLRW. Fence pipelining caused it to perform 1.7× better than

other PTM algorithms on Vacation, compared to 1.15× without the optimization. However,

eager TLRW has unsatisfactory performance in benchmarks with high write frequencies or

large read sets, due to the latency of acquiring locks on every read.

The most disappointing results were for RingSTM and NOrec. Both are appealing,

because they achieve privatization safety without quiescence. However, neither could match

the performance of gp-orec-lazy at high thread counts. Although the implementation of

RingSTM presented in the charts did not scale well, we were able to make it somewhat

more competitive at low thread counts by using its relaxed commit order optimization [111].

However, this optimization sacrifices ring’s privatization safety, and is offset by a need for

quiescence. In the case of NOrec, performance degraded relative to STM. There were two

causes. The first is that committing transactions in NOrec (STM) cause active transactions

to block. Adding clwb instructions to the commit sequence for PTM increases latency at

this most critical point. Secondly, logging granularity was not able to improve performance,

due to its impact on read set validation for NOrec.
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5.5.2 Performance in the Ideal Persistence Model

We now turn our attention to the performance of PTM algorithms after applying the ad-

ditional optimizations of the IP model. Here, we find that improvements in single-thread

latency, arising from the use of coarse granularity logging and last access tracking, are

stable: the boost to algorithms at one thread is borne out at higher thread counts. Further-

more, when it can be assumed that transactions only access NVM, and thus do not require

quiescence, the scalability is greatly improved.

As a result, the three orec-based algorithms rise above the rest, with only one instance

(Vacation, low contention, 48 threads) where TLRW outperforms. Furthermore, while op-

timizations are effective in reducing the overhead of orec-eager, the lazy algorithms perform

better, and in general, increasing laziness (via commit-time locking) has a beneficial im-

pact on scalability. The mixed mode (encounter-time locking with write-back), which was

proposed for Mnemosyne [116] occasionally outperforms our orec-lazy, but when orec-lazy

performs better, it is by a larger margin, indicating that orec-lazy is the best PTM algo-

rithm for the IP model. The peak performance speedup for orec-lazy, when comparing with

the GP model, is from 1.23× (d) to 4.06× (c), with a geometric mean of 1.92× across all

benchmarks.

5.6 Conclusions

In this chapter, we studied the performance of persistent transactional memory (PTM) al-

gorithms. Our study considered two programming models, one in which a single transaction

could interact with traditional DRAM and also NVM, and another in which transactions

only accessed NVM. We also presented optimizations for PTM, designed to reduce the cost

of fences, which are the most significant source of latency in PTM relative to the software

transactional memory algorithms (STM) on which they are built.

Our study is the most comprehensive to date, considering a diverse set of STM algo-

rithms and every publicly-available PTM benchmark. It shows that the choice of PTM

algorithm will depend critically on the programming model: under our general persistence

model, a variety of PTM algorithms could perform well, especially at low thread counts,
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whereas in the ideal model, a single algorithm was best. A critical question is whether

the ideal model is realistic: at the time of this writing, there are no commercially-available

NVM-only systems, but there are also no production-worthy applications that use STM for

transactions over DRAM. While we show that PTM over NVM provides compelling per-

formance at as few as two threads, making it a superior choice to lock-based concurrency,

the verdict on STM is muddier, and further clouded by incompatibility of hardware TM

(HTM) with NVM.
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Chapter 6

Conclusions and Future Work

In this dissertation, we applied transactional memory in various real-world applications to

demonstrate that existing TM platforms and common parallel programming models are not

compatible with each other, and even state-of-the-art TM algorithms are not optimal when

transformed to support data persistence. We then proposed, implemented, and evaluated

our solutions: In Chapter 2, we showed that non-blocking techniques are not compatible

with precise memory reclamation. We then introduced revocable reservations to bridge the

gap between them. In Chapter 3, we described our experiences employing TLE in two real-

world programs. We discovered the effects of quiescence for TLE and proposed language-

level support to let programmers dynamically disable quiescence. We also raised questions

regarding formalizing the sufficient and necessary conditions for TLE. In Chapter 4, we

analyzed the cost for long-running or irrevocable operations in transactions, and introduced

atomic deferral to allow programmers to move long-running or irrevocable operations out

of a transaction while maintaining serializability. In Chapter 5, We demonstrated how to

build concurrent persistent transactional memory from traditional software transactional

memories and introduced general and programming model-specific optimizations that can

substantially improve performance.

All of the above work is targeted at making transactional memory more appealing and

applicable, and thus increasing the chance for TM to be used in production code. As for

future work, we summarized our previous work and listed the possible directions to expand

the work in each chapter.
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In Chapter 2, our experiments showed the value of adjusting the number of locations

accessed per transaction. We used the thread count as a heuristic, but contention would

be a better metric. We plan to explore techniques wherein language-level transactions can

reliably and safely expose abort counts and abort causes to the programmer, to enable

such optimization in a standards-compliant way. We also found that our concurrent data

structures were sensitive to the choice of allocator, with unpredictable and occasionally

pathological behaviors. These findings suggest that there is still opportunity to improve

on the state of the art in memory allocation, possibly by considering TM-aware allocation

strategies and algorithms.

To further improve the work in Chapter 3, we are interested in creating tools for auto-

matically transforming output operations into deferred operations, and studying the rela-

tionship between atomic deferral and nested transactions. We are also interested in crafting

a more formal correctness argument, which may influence the use of transaction-friendly

locks in a greater range of workloads.

For supporting data persistence in Chapter 5, we plan to delve deeper into the rela-

tionship between HTM and PTM, with a particular focus on using HTM to prefetch or

pre-compute results, even if those results must be flushed using a software protocol. We

also plan to look at niche STM algorithms, to see if there are opportunities to optimize

them for PTM. Additionally, while the p-orec-lazy algorithm has proven to be the most

successful, its latency for performing lookups in its redo log is not trivial. We are currently

developing hardware extensions, such as content-addressable memory, to reduce this over-

head in the common case. We also plan to explore new STM and PTM algorithms that

are able to offer stable performance and good scaling when threads are not constrained to

a single socket. Lastly, we plan to explore static analysis that can reduce instrumentation,

e.g., by decomposing the PTM interface and coalescing undo or redo operations, similar to

past work on STM [52].

Lastly, our experience suggests that much more work is needed before programmers

can use TM easily. Library support remains inconsistent, and even a fully-implemented

specification is insufficient to address third-party libraries. We encourage continued effort

in this direction.

122



www.manaraa.com

Bibliography

[1] Mart́ın Abadi, Andrew Birrell, Tim Harris, and Michael Isard. Semantics of Trans-

actional Memory and Automatic Mutual Exclusion. In Proceedings of the 35th ACM

Symposium on Principles of Programming Languages, San Francisco, CA, January

2008.

[2] Mart́ın Abadi, Tim Harris, and Mojtaba Mehrara. Transactional Memory with Strong

Atomicity Using Off-the-Shelf Memory Protection Hardware. In Proceedings of the

14th PPoPP, Raleigh, NC, February 2009.

[3] Ali-Reza Adl-Tabatabai, Tatiana Shpeisman, and Justin Gottschlich. Draft Specifi-

cation of Transactional Language Constructs for C++, February 2012. Version 1.1,

http://justingottschlich.com/tm-specification-for-c-v-1-1/.

[4] Alexandro Baldassin, Edson Borin, and Guido Araujo. Performance Implications of

Dynamic Memory Allocators on Transactional Memory Systems. In Proceedings of

the 20th PPoPP, San Francisco, CA, February 2015.

[5] Oana Balmau, Rachid Guerraoui, Maurice Herlihy, and Igor Zablotchi. Fast and

Robust Memory Reclamation for Concurrent Data Structures. In Proceedings of the

28th ACM Symposium on Parallelism in Algorithms and Architectures, Asilomar State

Beach, CA, July 2016.

[6] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Mathema-

tizing C++ Concurrency. In Proceedings of the 28th ACM Symposium on Principles

of Programming Languages, Austin, TX, January 2011.

123



www.manaraa.com

[7] Emery Berger, Kathryn McKinley, Robert Blumofe, and Paul Wilson. Hoard: A

Scalable Memory Allocator for Multithreaded Applications. In Proceedings of the 9th

International Conference on Architectural Support for Programming Languages and

Operating Systems, Cambridge, MA, November 2000.

[8] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC

Benchmark Suite: Characterization and Architectural Implications. In Proceedings of

the 17th PACT, Toronto, ON, Canada, October 2008.

[9] Colin Blundell, E Christopher Lewis, and Milo M. K. Martin. Subtleties of Transac-

tional Memory Atomicity Semantics. Computer Architecture Letters, 5(2), November

2006.

[10] Anastasia Braginsky, Alex Kogan, and Erez Petrank. Drop the Anchor: Lightweight

Memory Management for Non-Blocking Data Structures. In Proceedings of the 25th

ACM Symposium on Parallelism in Algorithms and Architectures, Montreal, Quebec,

Canada, July 2013.

[11] Anastasia Braginsky and Erez Petrank. A Lock-Free B+tree. In Proceedings of the

24th ACM Symposium on Parallelism in Algorithms and Architectures, Pittsburgh,

PA, June 2012.

[12] Trevor Brown. Reclaiming Memory for Lock-Free Data Structures: There has to be a

Better Way. In Proceedings of the 34th ACM Symposium on Principles of Distributed

Computing, Portland, OR, June 2015.

[13] Irina Calciu, Justin Gottschlich, Tatiana Shpeisman, Gilles Pokam, and Maurice Her-

lihy. Invyswell: A Hybrid Transactional Memory for Haswell’s Restricted Trans-

actional Memory. In Proceedings of the 23rd International Conference on Parallel

Architectures and Compilation Techniques, Edmonton, AB, Canada, August 2014.

[14] Brian D. Carlstrom, Austen McDonald, Hassan Chafi, JaeWoong Chung, Chi Cao

Minh, Christos Kozyrakis, and Kunle Olukotun. The Atomos Transactional Pro-

gramming Language. In Proceedings of the 27th PLDI, June 2006.

124



www.manaraa.com

[15] Dhruva R Chakrabarti, Hans-J Boehm, and Kumud Bhandari. Atlas: Leveraging

locks for non-volatile memory consistency. In ACM SIGPLAN Notices, volume 49,

pages 433–452. ACM, 2014.

[16] Dhruva R Chakrabarti, Hans-J Boehm, and Kumud Bhandari. Atlas: Leveraging

Locks for Non-Volatile Memory Consistency. In ACM SIGPLAN Notices, volume 49,

pages 433–452. ACM, 2014.

[17] Joel Coburn, Adrian Caulfield, Ameen Akel, Laura Grupp, Rajesh Gupta, Ranjit

Jhala, and Steven Swanson. NV-Heaps: Making Persistent Objects Fast and Safe

with Next-generation, Non-volatile Memories. In Proceedings of the Sixteenth Inter-

national Conference on Architectural Support for Programming Languages and Oper-

ating Systems, New York, NY, USA, March 2011.

[18] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp, Rajesh K Gupta,

Ranjit Jhala, and Steven Swanson. Nv-heaps: making persistent objects fast and safe

with next-generation, non-volatile memories. ACM Sigplan Notices, 46(3):105–118,

2011.

[19] Nachshon Cohen and Erez Petrank. Efficient Memory Management for Lock-Free

Data Structures with Optimistic Access. In Proceedings of the 27th ACM Symposium

on Parallelism in Algorithms and Architectures, Portland, OR, June 2015.

[20] Andreia Correia, Pascal Felber, and Pedro Ramalhete. Romulus: Efficient algorithms

for persistent transactional memory. In Proceedings of the 30th on Symposium on

Parallelism in Algorithms and Architectures, pages 271–282. ACM, 2018.

[21] Tyler Crain, Vincent Gramoli, and Michel Raynal. A Speculation-Friendly Binary

Search Tree. In Proceedings of the 16th ACM Symposium on Principles and Practice

of Parallel Programming, New Orleans, LA, February 2012.

[22] Luke Dalessandro, Francois Carouge, Sean White, Yossi Lev, Mark Moir, Michael

Scott, and Michael Spear. Hybrid NOrec: A Case Study in the Effectiveness of Best

125



www.manaraa.com

Effort Hardware Transactional Memory. In Proceedings of the 16th International Con-

ference on Architectural Support for Programming Languages and Operating Systems,

Newport Beach, CA, March 2011.

[23] Luke Dalessandro and Michael Scott. Strong Isolation is a Weak Idea. In Proceedings

of the 4th ACM SIGPLAN Workshop on Transactional Computing, Raleigh, NC,

February 2009.

[24] Luke Dalessandro, Michael Spear, and Michael L. Scott. NOrec: Streamlining STM

by Abolishing Ownership Records. In Proceedings of the 15th ACM Symposium on

Principles and Practice of Parallel Programming, Bangalore, India, January 2010.

[25] Brian Demsky and Navid Tehrany. Integrating File Operations into Transactional

Memory. Journal of Parallel and Distributed Computing, 71(10):1293–1304, 2011.

[26] Mathieu Desnoyers, Paul McKenney, Alan Stern, Michel Dagenais, and Jonathan

Walpole. User-Level Implementations of Read-Copy Update. IEEE Transactions on

Parallel and Distributed Systems, 23(2):375–382, 2012.

[27] Dave Dice, Yossi Lev, Virendra Marathe, Mark Moir, Marek Olszewski, and Dan

Nussbaum. Simplifying Concurrent Algorithms by Exploiting Hardware TM. In Pro-

ceedings of the 22nd ACM Symposium on Parallelism in Algorithms and Architectures,

Santorini, Greece, June 2010.

[28] Dave Dice, Ori Shalev, and Nir Shavit. Transactional Locking II. In Proceedings

of the 20th International Symposium on Distributed Computing, Stockholm, Sweden,

September 2006.

[29] David Dice and Nir Shavit. TLRW: Return of the Read-Write Lock. In Proceedings of

the 22nd ACM Symposium on Parallelism in Algorithms and Architectures, Santorini,

Greece, June 2010.

[30] Nuno Diegues, Paolo Romano, and Luis Rodrigues. Virtues and Limitations of Com-

modity Hardware Transactional Memory. In Proceedings of the 23rd PACT, Edmon-

ton, AB, Canada, August 2014.

126



www.manaraa.com

[31] Edsger W. Dijkstra. Solution of a Problem in Concurrent Programming Control.

Communications of the ACM, 8(9):569, 1965.

[32] Siakavaras Dimitrios, Konstantinos Nikas, Georgios Goumas, and Nectarios Koziris.

Combining htm and rcu to implement highly efficient balanced binary search trees. In

Parallel Architectures and Compilation Techniques, Portland, Oregon, USA, Septem-

ber 2017.

[33] Aleksandar Dragojevic and Tim Harris. STM in the Small: Trading Generality for

Performance in Software Transactional Memory. In Proceedings of the EuroSys2012

Conference, Bern, Switzerland, April 2012.

[34] Aleksandar Dragojevic, Maurice Herlihy, Yossi Lev, and Mark Moir. On The Power

of Hardware Transactional Memory to Simplify Memory Management. In Proceedings

of the 30th ACM Symposium on Principles of Distributed Computing, San Jose, CA,

June 2011.

[35] Aleksandar Dragojevic, Yang Ni, and Ali-Reza Adl-Tabatabai. Optimizing Transac-

tions for Captured Memory. In Proceedings of the 21st ACM Symposium on Paral-

lelism in Algorithms and Architectures, Calgary, AB, Canada, August 2009.

[36] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-blocking

Binary Search Trees. In Proceedings of the 29th ACM Symposium on Principles of

Distributed Computing, Zurich, Switzerland, July 2010.

[37] Kapali P. Eswaran, Jim Gray, Raymond A. Lorie, and Irving L. Traiger. The Notions

of Consistency and Predicate Locks in a Database System. Communications of the

ACM, 19(11):624–633, 1976.

[38] Jason Evans. jemalloc memory allocator, 2017. http://http://jemalloc.net/.

[39] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic Performance Tuning of

Word-Based Software Transactional Memory. In Proceedings of the 13th PPoPP, Salt

Lake City, UT, February 2008.

127



www.manaraa.com

[40] Pascal Felber, Vincent Gramoli, and Rachid Guerraoui. Elastic transactions. In

International Symposium on Distributed Computing, pages 93–107. Springer, 2009.

[41] Keir Fraser. Practical Lock-Freedom. PhD thesis, King’s College, University of Cam-

bridge, September 2003.

[42] Free Software Foundation. Transactional Memory in GCC, 2012.

http://gcc.gnu.org/wiki/TransactionalMemory.

[43] Free Software Foundation. Transactional Memory in GCC, 2016.

http://gcc.gnu.org/wiki/TransactionalMemory.

[44] Jeff Gilchrist. Parallel BZIP2 (PBZIP2) Data Compression Software, 2016.

http://compression.ca/pbzip2/.

[45] Ellis R Giles, Kshitij Doshi, and Peter Varman. Softwrap: A lightweight framework

for transactional support of storage class memory. In Mass Storage Systems and

Technologies (MSST), 2015 31st Symposium on, pages 1–14. IEEE, 2015.

[46] Justin Gottschlich and Hans-J. Boehm. Generic Programming Needs Transactional

Memory. In Proceedings of the 8th ACM SIGPLAN Workshop on Transactional Com-

puting, Houston, TX, March 2013.

[47] Vincent Gramoli. More Than You Ever Wanted to Know about Synchronization. In

Proceedings of the 20th PPoPP, San Francisco, CA, February 2015.

[48] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Toward a Theory of Trans-

actional Contention Managers. In Proceedings of the 24th ACM Symposium on Prin-

ciples of Distributed Computing, Las Vegas, NV, July 2005.

[49] Rachid Guerraoui and Michal Kapalka. On the Correctness of Transactional Memory.

In Proceedings of the 13th ACM Symposium on Principles and Practice of Parallel

Programming, Salt Lake City, UT, February 2008.

128



www.manaraa.com

[50] Tim Harris. A Pragmatic Implementation of Non-Blocking Linked Lists. In Proceed-

ings of the 15th International Symposium on Distributed Computing, Lisbon, Portugal,

October 2001.

[51] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Composable

Memory Transactions. In Proceedings of the 10th PPoPP, Chicago, IL, June 2005.

[52] Tim Harris, Mark Plesko, Avraham Shinar, and David Tarditi. Optimizing Memory

Transactions. In Proceedings of the 27th ACM Conference on Programming Language

Design and Implementation, Ottawa, ON, Canada, June 2006.

[53] Maurice Herlihy and Eric Koskinen. Transactional boosting: A methodology for

highly-concurrent transactional objects. In Proceedings of the 13th PPoPP, Salt Lake

City, UT, February 2008.

[54] Maurice P. Herlihy, Victor Luchangco, and Mark Moir. Obstruction free synchro-

nization: Double-ended queues as an example. In Proceedings of 23rd International

Conference on Distributed Computing Systems, May 2003.

[55] Maurice P. Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III. Soft-

ware Transactional Memory for Dynamic-sized Data Structures. In Proceedings of the

22nd ACM Symposium on Principles of Distributed Computing, Boston, MA, July

2003.

[56] Maurice P. Herlihy and J. Eliot B. Moss. Transactional Memory: Architectural Sup-

port for Lock-Free Data Structures. In Proceedings of the 20th ISCA, San Diego, CA,

May 1993.

[57] Richard L. Hudson, Bratin Saha, Ali-Reza Adl-Tabatabai, and Benjamin Hertzberg.

A Scalable Transactional Memory Allocator. In Proceedings of the International Sym-

posium on Memory Management, Ottawa, ON, Canada, June 2006.

[58] Intel. NVDIMM Block Window Driver Writer’s Guide.

http://pmem.io/documents/NVDIMM DriverWritersGuide-July-2016.pdf.

129



www.manaraa.com

[59] Intel Corporation. Nvml: Implementing persistent memory applications.

https://www.snia.org/sites/default/files/.

[60] Intel Corporation. Intel Architecture Instruction Set Extensions Programming (Chap-

ter 8: Transactional Synchronization Extensions). February 2012.

[61] ISO/IEC JTC 1/SC 22/WG 21. Technical Specification for C++ Extensions for

Transactional Memory, May 2015.

[62] Louis Jenkins, Tingzhe Zhou, and Michael F. Spear. Redesigning go’s built-in map to

support concurrent operations. In Parallel Architectures and Compilation Techniques,

PACT’17, Portland, Oregon, USA, September 2017.

[63] Tomas Karnagel, Roman Dementiev, Ravi Rajwar, Konrad Lai, Thomas Legler, Ben-

jamin Schlegel, and Wolfgang Lehner. Improving In-Memory Database Index Per-

formance with Intel Transactional Synchronization Extensions. In Proceedings of the

20th HPCA, Orlando, FL, February 2014.

[64] Gokcen Kestor, Osman Unsal, Adrian Cristal, and Serdar Tasiran. T-Rex: A Dynamic

Race Detection Tool for C/C++ Transactional Memory Applications. In Proceedings

of the EuroSys2014 Conference, Amsterdam, The Netherlands, April 2014.

[65] Matthew Kilgore, Stephen Louie, Chao Wang, Tingzhe Zhou, Wenjia Ruan, Yujie

Liu, , and Michael Spear. Transactional Tools for the Third Decade. In Proceedings

of the 10th TRANSACT, Portland, OR, June 2015.

[66] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M Chen, and Thomas F Wenisch. High-

performance transactions for persistent memories. ACM SIGOPS Operating Systems

Review, 50(2):399–411, 2016.

[67] Benjamin C Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek, Onur

Mutlu, and Doug Burger. Phase-change technology and the future of main memory.

IEEE micro, 30(1), 2010.

130



www.manaraa.com

[68] Yossi Lev, Victor Luchangco, Virendra Marathe, Mark Moir, Dan Nussbaum, and

Marek Olszewski. Anatomy of a Scalable Software Transactional Memory. In Pro-

ceedings of the 4th ACM SIGPLAN Workshop on Transactional Computing, Raleigh,

NC, February 2009.

[69] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, and Jinglei

Ren. Dudetm: Building durable transactions with decoupling for persistent memory.

In Proceedings of the 22nd ACM International Conference on Architectural Support

for Programming Languages and Operating Systems, Xi’an, China, April 2017.

[70] Yujie Liu, Stephan Diestelhorst, and Michael Spear. Delegation and Nesting in Best

Effort Hardware Transactional Memory. In Proceedings of the 24th SPAA, Pittsburgh,

PA, June 2012.

[71] Yujie Liu, Victor Luchangco, and Michael Spear. Mindicators: A Scalable Approach

to Quiescence. In Proceedings of 33rd International Conference on Distributed Com-

puting Systems, Philadelphia, PA, July 2013.

[72] Yujie Liu and Michael Spear. Toxic Transactions. In Proceedings of the 6th ACM

SIGPLAN Workshop on Transactional Computing, San Jose, CA, June 2011.

[73] Yujie Liu and Michael Spear. Mounds: Array-Based Concurrent Priority Queues. In

Proceedings of the 41st International Conference on Parallel Processing, Pittsburgh,

PA, September 2012.

[74] Yujie Liu, Kunlong Zhang, and Michael Spear. Dynamic-Sized Nonblocking Hash

Tables. In Proceedings of the 33rd ACM Symposium on Principles of Distributed

Computing, Paris, France, July 2014.

[75] Yujie Liu, Tingzhe Zhou, and Michael Spear. Transactional Acceleration of Concur-

rent Data Structures. In Proceedings of the 27th ACM Symposium on Parallelism in

Algorithms and Architectures, Portland, OR, June 2015.

131



www.manaraa.com

[76] Victor Luchangco, Mark Moir, and Nir Shavit. Nonblocking k-compare-single-swap.

In Proceedings of the 15th ACM Symposium on Parallel Algorithms and Architectures,

San Diego, CA, June 2003.

[77] Virendra Marathe, Achin Mishra, Amee Trivedi, Yihe Huang, Faisal Zaghloul, Sanid-

hya Kashyap, Margo Seltzer, Tim Harris, Steve Byan, Bill Bridge, and Dave Dice.

Persistent memory transactions. In arXiv preprint arXiv:1804.00701, 2018.

[78] Alexander Matveev and Nir Shavit. Reduced Hardware NORec: A Safe and Scalable

Hybrid Transactional Memory. In Proceedings of the 19th International Conference on

Architectural Support for Programming Languages and Operating Systems, Istanbul,

Turkey, March 2015.

[79] Paul E. McKenney. Exploiting Deferred Destruction: An Analysis of Read-Copy-

Update Techniques in Operating System Kernels. PhD thesis, OGI School of Science

and Engineering at Oregon Health and Sciences University, 2004.

[80] memcached.org. Memcached, 2014. http://memcached.org/.

[81] Vijay Menon, Steven Balensiefer, Tatiana Shpeisman, Ali-Reza Adl-Tabatabai,

Richard Hudson, Bratin Saha, and Adam Welc. Practical Weak-Atomicity Semantics

for Java STM. In Proceedings of the 20th SPAA, Munich, Germany, June 2008.

[82] Maged Michael. High Performance Dynamic Lock-Free Hash Tables and List-Based

Sets. In Proceedings of the 14th ACM Symposium on Parallel Algorithms and Archi-

tectures, Winnipeg, Manitoba, Canada, August 2002.

[83] Maged Michael. Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects.

IEEE Transactions on Parallel and Distributed Systems, 15(6):491–504, June 2004.

[84] Maged M. Michael and Michael L. Scott. Simple, Fast, and Practical Non-Blocking

and Blocking Concurrent Queue Algorithms. In Proceedings of the 15th ACM Sym-

posium on Principles of Distributed Computing, May 1996.

[85] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. STAMP:

Stanford Transactional Applications for Multi-processing. In Proceedings of the IEEE

132



www.manaraa.com

International Symposium on Workload Characterization, Seattle, WA, September

2008.

[86] Takuya Nakaike, Rei Odaira, Matthew Gaudet, Maged M. Michael, and Hisanobu

Tomari. Quantitative Comparison of Hardware Transactional Memory for Blue

Gene/Q, zEnterprise EC12, Intel Core, and POWER8. In Proceedings of the 42nd

ISCA, Portland, OR, June 2015.

[87] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris Volos, and Kim-

berly Keeton. An analysis of persistent memory use with whisper. In Proceedings of

the Twenty-Second International Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS’17, Xi’an, China, April 2017.

[88] Aravind Natarajan and Neeraj Mittal. Fast concurrent lock-free binary search. In

Proceedings of the 19th ACM SIGPLAN symposium on Principles and practice of

parallel programming, Orlando, FL, February 2014.

[89] Newsroom, Intel. Intel and Micron produce breakthrough memory technology, 2018.

https://www.intel.com/content/www/us/en/architecture-and-technology/intel-

optane-technology.html.

[90] Yang Ni, Vijay Menon, Ali-Reza Adl-Tabatabai, Antony Hosking, Rick Hudson, Eliot

Moss, Bratin Saha, and Tatiana Shpeisman. Open Nesting in Software Transactional

Memory. In Proceedings of the 12th PPoPP, San Jose, CA, March 2007.

[91] Yang Ni, Adam Welc, Ali-Reza Adl-Tabatabai, Moshe Bach, Sion Berkowits, James

Cownie, Robert Geva, Sergey Kozhukow, Ravi Narayanaswamy, Jeffrey Olivier, Ser-

guei Preis, Bratin Saha, Ady Tal, and Xinmin Tian. Design and Implementation of

Transactional Constructs for C/C++. In Proceedings of the 23rd OOPSLA, Nashville,

TN, USA, October 2008.

[92] Marek Olszewski, Jeremy Cutler, and J. Gregory Steffan. JudoSTM: A Dynamic

Binary-Rewriting Approach to Software Transactional Memory. In Proceedings of the

133



www.manaraa.com

16th International Conference on Parallel Architecture and Compilation Techniques,

Brasov, Romania, September 2007.

[93] Parabola Research. HEVC Wavefront Animation, December 2013.

https://www.parabolaresearch.com/blog/2013-12-01-hevc-wavefront-animation.html.

[94] Martin Pohlack and Stephan Diestelhorst. From Lightweight Hardware Transactional

Memory to Lightweight Lock Elision. In Proceedings of the 6th ACM SIGPLAN

Workshop on Transactional Computing, San Jose, CA, June 2011.

[95] William Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees. Communi-

cations of the ACM, 33:668–676, June 1990.

[96] Ravi Rajwar and James R. Goodman. Speculative Lock Elision: Enabling Highly

Concurrent Multithreaded Execution. In Proceedings of the 34th IEEE/ACM Inter-

national Symposium on Microarchitecture, Austin, TX, December 2001.

[97] Jinglei Ren, Qingda Hu, Samira Khan, and Thomas Moscibroda. Programming for

non-volatile main memory is hard. In Proceedings of the 8th Asia-Pacific Workshop

on Systems, September 2017.

[98] Torvald Riegel, Christof Fetzer, and Pascal Felber. Automatic Data Partitioning in

Software Transactional Memories. In Proceedings of the 20th ACM Symposium on

Parallelism in Algorithms and Architectures, Munich, Germany, June 2008.

[99] Christopher J. Rossbach, Owen S. Hofmann, Donald E. Porter, Hany E. Ramadan,

Aditya Bhandari, and Emmett Witchel. TxLinux: Using and Managing Transactional

Memory in an Operating System. In Proceedings of the 21st SOSP, Stevenson, WA,

October 2007.

[100] Amitabha Roy, Steven Hand, and Tim Harris. A Runtime System for Software Lock

Elision. In Proceedings of the EuroSys2009 Conference, Nuremberg, Germany, March

2009.

134



www.manaraa.com

[101] Wenjia Ruan and Michael Spear. Hybrid Transactional Memory Revisited. In Proceed-

ings of the 29th International Symposium on Distributed Computing, Tokyo, Japan,

October 2015.

[102] Wenjia Ruan, Trilok Vyas, Yujie Liu, and Michael Spear. Transactionalizing Legacy

Code: An Experience Report Using GCC and Memcached. In Proceedings of the 19th

ASPLOS, Salt Lake City, UT, March 2014.

[103] William N. Scherer III and Michael L. Scott. Advanced Contention Management for

Dynamic Software Transactional Memory. In Proceedings of the 24th ACM Symposium

on Principles of Distributed Computing, Las Vegas, NV, July 2005.

[104] Seunghee Shin, James Tuck, and Yan Solihin. Hiding the long latency of persist

barriers using speculative execution. In Proceedings of the 44th Annual International

Symposium on Computer Architecture, Toronto, ON, Canada, June 2017.

[105] Tatiana Shpeisman, Ali-Reza Adl-Tabatabai, Robert Geva, Yang Ni, and Adam Welc.

Towards Transactional Memory Semantics for C++. In Proceedings of the 21st ACM

Symposium on Parallelism in Algorithms and Architectures, Calgary, AB, Canada,

August 2009.

[106] Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai, Steven Balensiefer, Dan

Grossman, Richard L. Hudson, Kate Moore, and Bratin Saha. Enforcing Isolation

and Ordering in STM. In Proceedings of the 2007 ACM Conference on Programming

Language Design and Implementation, San Diego, CA, June 2007.

[107] Simo, N. and Antoni, W. and Markk, M. and Vilho, R. Tpc- c benchmark v5, 2015.

[108] Michael Spear, Luke Dalessandro, Virendra J. Marathe, and Michael L. Scott. A Com-

prehensive Strategy for Contention Management in Software Transactional Memory.

In Proceedings of the 14th ACM Symposium on Principles and Practice of Parallel

Programming, Raleigh, NC, February 2009.

135



www.manaraa.com

[109] Michael Spear, Virendra Marathe, Luke Dalessandro, and Michael Scott. Privatization

Techniques for Software Transactional Memory (POSTER). In Proceedings of the 26th

PODC, Portland, OR, August 2007.

[110] Michael Spear, Maged M. Michael, and Michael L. Scott. Inevitability Mechanisms for

Software Transactional Memory. In Proceedings of the 3rd ACM SIGPLAN Workshop

on Transactional Computing, Salt Lake City, UT, February 2008.

[111] Michael Spear, Maged M. Michael, and Christoph von Praun. RingSTM: Scalable

Transactions with a Single Atomic Instruction. In Proceedings of the 20th ACM

Symposium on Parallelism in Algorithms and Architectures, Munich, Germany, June

2008.

[112] Michael Spear, Michael Silverman, Luke Dalessandro, Maged M. Michael, and

Michael L. Scott. Implementing and Exploiting Inevitability in Software Transactional

Memory. In Proceedings of the 37th International Conference on Parallel Processing,

Portland, OR, September 2008.

[113] THE TRANSACTION PROCESSING COUNCIL. Tpc- c benchmark v5, 2015.

[114] AA Tulapurkar, Y Suzuki, A Fukushima, H Kubota, H Maehara, K Tsunekawa,

DD Djayaprawira, N Watanabe, and S Yuasa. Spin-torque diode effect in magnetic

tunnel junctions. Nature, 438(7066):339, 2005.

[115] Haris Volos, Andres Jaan Tack, Neelam Goyal, Michael Swift, and Adam Welc. xCalls:

Safe I/O in Memory Transactions. In Proceedings of the EuroSys2009 Conference,

Nuremberg, Germany, March 2009.

[116] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: Lightweight

persistent memory. In ACM SIGARCH Computer Architecture News, March 2011.

[117] Chao Wang, Yujie Liu, and Michael Spear. Transaction-Friendly Condition Variables.

In Proceedings of the 26th SPAA, Prague, Czech Republic, June 2014.

136



www.manaraa.com

[118] Adam Welc, Bratin Saha, and Ali-Reza Adl-Tabatabai. Irrevocable Transactions and

their Applications. In Proceedings of the 20th ACM Symposium on Parallelism in

Algorithms and Architectures, Munich, Germany, June 2008.

[119] Michael Widenius and David Axmark. MySQL reference manual: documentation from

the source. ” O’Reilly Media, Inc.”, 2002.

[120] Wang Xin, Weihua Zhang, Zhaoguo Wang, Ziyun Wei, Haibo Chen, and Wenyun

Zhao. Eunomia: Scaling concurrent search trees under contention using htm. In

Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, Austin, Texas, United States, February 2017.

[121] Richard Yoo, Christopher Hughes, Konrad Lai, and Ravi Rajwar. Performance Eval-

uation of Intel Transactional Synchronization Extensions for High Performance Com-

puting. In Proceedings of the International Conference for High Performance Com-

puting, Networking, Storage and Analysis, Denver, CO, November 2013.

[122] Richard Yoo, Yang Ni, Adam Welc, Bratin Saha, Ali-Reza Adl-Tabatabai, and Hsien-

Hsin Lee. Kicking the Tires of Software Transactional Memory: Why the Going Gets

Tough. In Proceedings of the 20th ACM Symposium on Parallelism in Algorithms and

Architectures, Munich, Germany, June 2008.

[123] Pantea Zardoshti, Tingzhe Zhou, Pavithra Balaji, Michael L. Scott, and Michael

Spear. Simplifying Transactional Memory Support in C++. ACM Transactions on

Architecture and Code Optimization, 1, 2019.

[124] Tingzhe Zhou, Victor Luchangco, and Michael Spear. Brief announcement: Extending

transactional memory with atomic deferral. In Proceedings of the 29th ACM Sym-

posium on Parallelism in Algorithms and Architectures, Washington, DC, USA, July

2017.

[125] Tingzhe Zhou, Victor Luchangco, and Michael Spear. Extending transactional mem-

ory with atomic deferral. In The 21st International Conference on Principles of

Distributed Systems, Lisboa, Portugal, December 2017.

137



www.manaraa.com

[126] Tingzhe Zhou, Victor Luchangco, and Michael Spear. Hand-over-hand transactions

with precise memory reclamation. In Proceedings of the 29th ACM Symposium on

Parallelism in Algorithms and Architectures, Washington, DC, USA, July 2017.

[127] Tingzhe Zhou and Michael Spear. The Mimir Approach to Transactional Output. In

Proceedings of the 11th TRANSACT, Barcelona, Spain, March 2016.

[128] Tingzhe Zhou, PanteA Zardoshti, and Michael Spear. Practical Experience with

Transactional Lock Elision. In Proceedings of the 12th ACM SIGPLAN Workshop on

Transactional Computing, Austin, TX, February 2017.

[129] Tingzhe Zhou, PanteA Zardoshti, and Michael Spear. Practical Experience with

Transactional Lock Elision. In Proceedings of the 46th International Conference on

Parallel Processing, Bristol, UK, August 2017.

[130] Tingzhe Zhou, Pantea Zardoshti, and Michael Spear. Brief announcement: Optimizing

persistent transactions. In Proceedings of the 31st ACM Symposium on Parallelism

in Algorithms and Architectures, Phoenix, AZ, USA, June 22–24 2019.

[131] Craig Zilles and Lee Baugh. Extending Hardware Transactional Memory to Sup-

port Non-Busy Waiting and Non-Transactional Actions. In Proceedings of the 1st

TRANSACT, Ottawa, ON, Canada, June 2006.

[132] Ferad Zyulkyarov, Vladimir Gajinov, Osman Unsal, Adrian Cristal, Eduard Ayguade,

Tim Harris, and Mateo Valero. Atomic Quake: Using Transactional Memory in an

Interactive Multiplayer Game Server. In Proceedings of the 14th PPoPP, Raleigh,

NC, February 2009.

138



www.manaraa.com

Biography

Tingzhe Zhou received his Bachelor of Engineering in Computer Science and Technology

from Wuhan University of Science and Technology in 2012. He was also awarded a Prin-

cipal’s Medal in the same year, which was established to recognize the top ten students

who have made a significant contribution to the University. Then he attended to Huazhong

University of Science and Technology as a research assistant in Cluster and Grid Comput-

ing Lab majoring in Distributed Systems. In 2014, Tingzhe joined the Computer Science

and Engineering Department at Lehigh University as a Ph.D. student. He was received his

Master of Science Degree in May 2018. He will award the degree of Doctor of Philosophy in

Computer Science from Lehigh University in May 2019. He has published in many venues

including SPAA, ICPP, PACT, OPODIS, CCS, ACM TACO.

139


	Lehigh University
	Lehigh Preserve
	2019

	Tailoring Transactional Memory to Real-World Applications
	Tingzhe Zhou
	Recommended Citation


	tmp.1568895844.pdf.yNP6E

